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Abstract
As promising next-generation candidates for applications in aero-engines, L12-strengthened cobalt (Co)-based 
superalloys have attracted extensive attention. However, the L12 strengthening phase in first-generation Co-Al-W-
based superalloys is metastable, and both its solvus temperature and mechanical properties still need 
improvement. Therefore, it is necessary to discover new L12-strengthened Co-based superalloy systems with a 
stable L12 phase by exploring the effect of alloying elements on their stability. Traditional first-principles 
calculations are capable of providing the crystal structure and mechanical properties of the L12 phase doped by 
transition metals but suffer from low efficiency and relatively high computational costs. The present study 
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combines machine learning (ML) with first-principles calculations to accelerate crystal structure and mechanical 
property predictions, with the latter providing both the training and validation datasets. Three ML models are 
established and trained to predict the occupancy of alloying elements in the supercell and the stability and 
mechanical properties of the L12 phase. The ML predictions are evaluated using first-principles calculations and the 
accompanying data are used to further refine the ML models. Our ML-accelerated first-principles calculation 
approach offers more efficient predictions of the crystal structure and mechanical properties for Co-V-Ta- and Co-
Al-V-based systems than the traditional counterpart. This approach is applicable to expediting crystal structure 
and mechanical property calculations and thus the design and discovery of other advanced materials beyond Co-
based superalloys.

Keywords: Co-based superalloys, first-principles calculations, site occupancy, phase stability, mechanical 
properties, machine learning

INTRODUCTION
Ni-based superalloys have been widely used in the aviation, aerospace and petrochemical industries due to 
their superior combination of highly desirable properties, such as microstructural stability, mechanical 
properties and oxidation and thermal corrosion resistance at elevated temperatures[1,2]. The signature 
coherent γ/γ' two-phase precipitate microstructure can maintain the strength of the superalloys under high-
temperature conditions[3]. However, due to the limitation of the melting temperature of elemental Ni 
(1455 °C), the working temperature of current Ni-based superalloys is approaching the upper limit. Thus, it 
is highly desirable to search for a new class of superalloys that can meet the requirements of next-generation 
aero-engines with ever-increasing working temperatures. The melting temperature of elemental cobalt (Co) 
is ~40 °C higher than that of Ni. Therefore, Co-based superalloys are regarded as promising material 
candidates for next-generation aero-engine applications. Nevertheless, the high-temperature mechanical 
properties of conventional Co-based superalloys need to be significantly improved because the major 
strengthening phase is the carbide precipitate instead of the ordered γ' phase (also referred to as the L12 
phase) that it is really exsist in the Ni-based superalloys.[4,5]. In 2006, Sato et al. first discovered the coherent 
γ/γ' microstructure in the Co-Al-W-based alloy, thereby opening up new avenues for alloy development[6]. 
However, the L12 phase is metastable and only exists within a narrow composition region[5,7,8], necessitating 
the further development of this material. The alloying of transition metals (TMs) has been found to be 
effective in promoting the precipitation of the stable L12 phase[9-11] and increasing the solvus temperature and 
mechanical properties of the L12 phase at different levels[12,13]. Using this approach, Co-Al-Mo-X[14-17], Co-
Ga-W-X[18], Co-Ge-W-X[19], Co-Ti-Cr-X[20,21] and several other alloy systems have already been designed, and 
all of which have a stable γ/γ' two-phase microstructure.

Nevertheless, to explore the high-dimensional composition and temperature space through the alloying 
strategy, the traditional experimental methods based on trial and error are labor intensive and time-
consuming. In order to guide the design and discovery of new L12-strengthened Co-based superalloys with 
enhanced mechanical properties, the basic information, such as the crystal structures and atomic 
occupancies, of the L12 phase are highly desirable, which is defined as the site occupied by a doped TM. 
Through structural optimization and static calculations based on first-principles calculations, the ground-
state static energy of the L12 phase at 0 K can be accurately calculated and the stable formation enthalpy and 
reaction energy of the L12 phase can then be derived[22,23]. First-principles calculations can also be combined 
with Hook’s law to predict the elastic constant of the supercell of Co-based superalloys, which allows for the 
prediction of the mechanical properties, such as the bulk, shear and elastic moduli[24,25]. However, the 
procedures of traditional first-principles calculations are tedious and require significant computational 
resources. In the case of a system with more than four elements, the number of nonequivalent sites for each 
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element in the supercell will dramatically increase due to the increase in the types of elements, resulting in a 
significant increase in computational cost and a reduction in computational efficiency. Therefore, 
improving the computational efficiency to speed up alloy discovery requires an alternative approach[26].

To date, there has been a push towards big data and artificial intelligence in materials research[27,28]. Machine 
learning (ML) is a type of algorithm that can acquire new knowledge “automatically” like human beings, 
mine the existing data, extract key information, establish a predictive model that describes the relationship 
between influencing factors and a target property and use the model to predict new materials of new 
unknown systems[26]. ML-based methods have been widely used for assisting the design and discovery of a 
wide class of materials, including alloys, ceramics and composites, polymers, two-dimensional materials, 
organic-inorganic hybrids, and so on[29,30]. Using ML algorithms, new materials with excellent performance 
have been developed successfully and efficiently. However, most of the data used to train the models are 
collected from experimental studies[31-36]. Only a few studies have relied on data from first-principles 
calculations to train ML algorithms. For example, Guo et al. made efforts to establish and train ML models 
using the formation energies and lattice constants obtained from first-principles calculations of the 
Co3(Al, X) (X = 3d, 4d or 5d TM, excluding Co and W) precipitate phase[37]. The structures of a new class of 
Co3(Al, WX3) precipitate phases were predicted using the trained ML models, showing the potential of ML 
in the development of L12-strengthed Co-based superalloys.

To overcome the limitations posed by the inherent low efficiency in predicting the crystal structure and 
mechanical properties of the L12 phase using conventional first-principles calculations, a ML-accelerated 
first-principles approach is proposed in the present work. First, ML algorithms are established and trained 
using the data provided by conventional density functional theory (DFT) calculations. A small number of 
predictions made by these ML models are then validated by the first-principles calculations and the 
resulting dataset is used for improving the ML models if necessary. Finally, the models are employed to 
predict the crystal structure and mechanical properties of the L12 phase. These predictions may provide a 
theoretical basis for the design and discovery of new L12-strengthed Co-based superalloys. In particular, it is 
found that the efficiency of this ML-assisted method is twice as fast as that based on conventional first-
principles calculations alone.

CALCULATION METHOD
Iterative three-stage computations
In order to obtain the crystal structure and mechanical properties of the new L12-strengthened Co-based 
superalloys more efficiently, ML algorithms are combined with first-principles calculations to predict the 
properties of the superalloys mentioned above in three steps.

Before attempting to use ML algorithms, it is necessary to conduct a detailed analysis of the first-principles 
calculations to determine the concept of establishing the ML models, as shown in Figure 1. First, the types 
of TM dopants contained in the supercells are assumed and the relaxed structures of the L12 phase and its 
competing D019 phase are calculated through relaxation optimization. Second, the occupation tendency of 
the TM dopants in the L12 and D019 phases is evaluated to determine the occupancy that is defined as the 
site in a supercell occupied by a TM dopant in these two phases. Third, the stabilities of the L12 and D019 
phases are compared in terms of the stable formation enthalpy, followed by the calculation of the 
mechanical properties for the L12 phase if it is more stable than the D019 phase.

In this study, we propose a new type of approach for predicting the L12 phase crystal structure and 
mechanical properties based on ML algorithms in new Co-based superalloys in three steps, namely, 
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Figure 1. Schematic workflow of ML-assisted first-principles calculations for designing L12-strengthened Co-based superalloys.

occupied sites, stability prediction and mechanical property prediction, similar to the procedures of first-
principles calculations mentioned above. Since the reaction energy and enthalpy of formation between 
different superalloy systems are incomparable numerically, the classification algorithm in ML should be 
selected to make a qualitative judgment rather than a quantitative prediction when predicting the 
occupancy of the doped TM atoms and the stability of the doped L12 and D019 phases.

First-principles calculations 
Details of first-principles calculations
First-principles calculations are employed to generate data for training the ML model and verifying the ML 
model predictions, so as to improve the ML model iteratively. The details of the first-principles calculations 
are briefly summarized below. Generally, first-principles calculations can only deal with a completely 
ordered phase. If a completely ordered structure can be found and the correlation function of the structure 
is close to that of a disordered alloy, it is considered that the structure can reflect the configuration of the 
disordered alloy and the structure is used as the cell model of the disordered alloy in the calculation. The 
essence of the special quasi-random structure (SQS) method is to find a completely ordered structure to 
represent the disordered structure by matching the correlation function[38,39]. Therefore, we use the SQS 
method to construct 2 × 2 × 2 supercells of the Co-based superalloys and consider two types of structures for 
the Co-Al-W-, Co-V-Ti-, Co-V-Ir-, Co-V-Ta- and Co-Al-V-based systems, namely, the AuCu3 and Ni3Sn 
prototype structures corresponding to the L12 and D019 phases, respectively[39,40] (see Figure 2 for the L12 and 
D019 structures). In addition, the Alloy Theoretic Automated Toolkit (ATAT) is used to identify the 
nonequivalent positions in the supercells[41].

The Vienna Ab initio Simulation Package (VASP) is used to perform all the first-principles calculations 
with the projector augmented wave (PAW) method[42-46] and Perdew-Burke-Ernzerhoff (PBE) exchange-
correlation functional using the generalized gradient approximation (GGA)[23]. During the structural 
relaxation, the criteria for the convergence of energy and maximum force are set to be 10-5 eV/atom and 10-3 

eV/Å, respectively. The kinetic energy cutoff is set to 450 eV. Spin polarization is considered during the 



Page 5 of Xi et al. J Mater Inf 2022;2:15 https://dx.doi.org/10.20517/jmi.2022.22 20

Figure 2. Crystal structures of (A) Co3(Al, W); (B) Co3(V, Ti); (C) Co3(V, Ir); (D) Co3(V, Ta) and (E) Co3(Al, V) of L12-ordered γ'-Co3(X, 
Y); and (F) Co3(Al, W); (G) Co3(V, Ti); (H) Co3(V, Ir); (I) Co3(V, Ta) and (J) Co3(Al, V) of D019-ordered γ'-Co3(X, Y). Sites #1, #2 and 
#3 represent Co and the X and Y dopants, respectively.

calculations because of the presence of the ferromagnetic Co. The Brillouin zones are sampled using
7 × 7 × 7 and 5 × 5 × 9 Γ-centered grids for the L12 and D019 structures, respectively, which balance the
computational accuracy, efficiency and cost.

Reaction and stable formation energies of L12 and D019 structures
Determining the occupancy of the TM dopants in the L12 phase is a vital prerequisite for obtaining an
accurate atomic configuration. The occupancy of an alloying element can be evaluated using the binding[23]

and formation energies of the impurity[47]. Each system calculated contains three main elements, each of
which is designated according to the name of the alloy system. For instance, Co, Al and W are the main
elements #1, #2 and #3 in the Co-Al-W system, respectively. In order to discover the role played by each TM
element, the reaction energy            of the 3d, 4d or 5d TM element occupying sites #1, #2 and #3 in the
supercells of each system is calculated as follows[48,49]:
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where                  represents the energy of Co3(X, Y),                   denotes the energy of TM-doped Co3(X, 
Y) and µi and µTM represent the chemical potential of the ith main and TM elements, respectively. The 
doping elements are energetically favorable to occupy the position(s) with the lowest reaction energy. 
Under Co-rich conditions, µCo denotes the energy of Co in the ground state[50]. Since we choose Co, CoAl, 
Co3W, Co3 Ti, CoV3 and Co3Ta as reference compounds,µAL, µw, µTi, µTa andµV are calculated from 
the following relationships, respectively:

The stability of the L12 phase is then evaluated by comparing the stable formation enthalpy ΔHS of the TM-
doped L12 and D019 phases, which can be calculated as follows[49,51]:

where µj is the chemical potential of element j.

Elastic properties from first-principles calculations
Elastic properties, such as the bulk (B), shear (G) and elastic moduli (E), can be calculated from the elastic 
constants, which can be computed according to the stress-strain energy curve method[52-56]. The calculation 
methods are presented in the Supporting Information (SI).

ML method
Dataset
The data for the L12 phase in the new Co-based superalloys with TM alloying elements are first generated by 
first-principles calculations. A total of 61 data from the Co-Al-W-, Co-V-Ti- and Co-V-Ir-based systems 
are collected for constructing a training set, which are all included in Supplementary Table 1[49,57]. The 
characteristics of the data are described briefly as follows:

(1) The microscopic characteristics of the elements are used to replace the names of the main and doping 
elements, including the melting point, boiling point, density, atomic weight, atomic radius, covalent radius, 
electronegativity and first ionization energy;

(2) For the occupancy prediction model, the microscopic characteristics of the main and doping elements 
are set as X and the occupancy of the doping elements are set as Y in the occupied site prediction models;

(3) For the L12 phase stability prediction model, the microscopic characteristics of the main and doping 
elements and the occupancy of the doping elements are set as X and the L12 phase stability is set as Y in the 
stability prediction models;



Page 7 of Xi et al. J Mater Inf 2022;2:15 https://dx.doi.org/10.20517/jmi.2022.22 20

(4) For the mechanical properties of the L12 phase prediction model, the microscopic characteristics of the 
main and doping elements, the occupancy of the doping elements and the L12 phase stability are set as X 
and the mechanical properties are set as Y in the mechanical property prediction models of the L12 phase.

There are two research routes of choice:

Route I: Predict C11, C12 and C44 and then calculate the elastic properties, including B, G and E, according to 
Eqs. (1)-(10) in the SI;

Route II: Predict elastic properties, including B, G and E, directly.

ML model selection and performance evaluation
According to the “no free lunch” theory[58], no algorithm can be applied to all situations, i.e., one algorithm 
(algorithm A) outperforms another (algorithm B) on a specific data set and therefore algorithm A will be 
inferior to algorithm B on another specific data set. As a result, a variety of ML algorithms are first 
employed to predict the crystal structure and mechanical properties of the L12 phase, followed by a model 
performance evaluation and comparison. The algorithm with the best performance is selected for making 
predictions.

Random forest classification, gradient boosting classification (GBC), AdaBoost classification, a support 
vector machine, an artificial neural network (ANN), K-nearest neighbor classification and Gaussian process 
classification are selected to establish the classification models. In contrast, regression models are 
established using random forest regression, gradient boosting regression, AdaBoost regression, support 
vector regression, an ANN, K-nearest neighbor regression and Gaussian process regression.

All the ML algorithms are run through Python 3.0 and the sklearn package is used to carry out the 
calculations. All calculations are performed using a PC (Microsoft Windows 10, Intel Core (TM) i7-10875H, 
CPU 2.30 GHz, 16 GB of RAM).

The performance of the various ML algorithms mentioned above is compared using the K-fold cross-
validation method. Since the test results of the K-fold cross-validation do not depend on the training set, the 
occurrence of overfitting can be avoided. The original data set is randomly divided into K equal subsets. 
One of the subsets is used as the test set, while the remaining ones consist of a new training set. Each subset 
should be used as a verification data set in turn, i.e., the above process is repeated K times. In this study, K is 
set to be ten[59,60].

The performance of a classification model is quantified by the so-called “accuracy”, which is the ratio of the 
total number of samples divided by the number of correct predictions, defined as:

where nt and na represent the total number of samples and the number of correct predictions, respectively. 
The criteria of accuracy need to be higher than 85%.
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In this study, a principal component analysis (PCA) algorithm is also employed to reduce the
dimensionality of the data. PCA is a statistical process that uses orthogonal transformation method to
convert a series of observations of possible related variables into a set of linear independent variables
referred to as principal components. A new feature vector      is defined by the following linear
transformation:

where WT is a matrix with orthonormal columns and          has fewer rows than      . The first three principal
components are used to represent most of the information contained in more than 25 features[60,61].

Several accuracy metrics, such as the coefficient of determination R, R2, mean absolute error (MAE) and
root mean squared error (RMSE), were evaluated for the ML algorithms[26,60]:

where Y and     denote the true and predicted values of the targeted properties, respectively, n is the
number size of the data, R value falls between (-1,1) and thus R2 value falls within (0,1). The closer the value
of R is to 1, the better the performance of the model prediction. MAE reflects the true error, while RMSE is
more sensitive to outliers. A larger MAE value or a smaller RMSE value indicates that the model is under-
fitting. The criteria of the R value need to be higher than 0.90, while the MAE and RMSE values are lower
than 7.50 and 10.00, respectively.

We evaluated the importance of the features with the relative importance (Ir) to measure the impact of these
features on the occupancy of each doping element and the stability and mechanical properties of the L12

structure and it is given by:

where IT is the importance of the feature calculated by the model and Imax is the highest importance 
calculated by the model among all the features. The values of Ir lie between 0 and 1.
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Iterative ML model improvement 
The performance of the selected ML algorithms is then iteratively improved through the interaction with 
the first-principles calculations. First, the selected algorithm is used to predict the target properties for a 
small amount of randomly chosen input data. Second, the predictions are verified using first-principles 
calculations. Third, if the accuracy of the models does not meet the requirements, the new data will be used 
as an additional dataset for re-training the ML model. The procedures above are repeated until the 
predefined precision is met. The improved models are then employed to predict all the remaining data (the 
workflow is schematically shown in Supplementary Figure 1).

RESULTS AND DISCUSSION
Establishment of ML models for predicting crystal structure and mechanical properties 
Predicting dopant occupancy and stability of L12 structures
The occupancy of a TM dopant may significantly influence both the stability and mechanical properties of 
the L12 phase in Co-based superalloys[62]. In new Co-based superalloys, the D019 phase usually competes 
against the L12 phase[49]. The performance of various ML algorithms for predicting the dopant occupancy 
and stability of the L12 structures are evaluated using 10-fold cross-validation and the results are shown in 
Figure 3. The gradient boosting algorithm is found to have the highest accuracy (reaching 88.52% and 
93.44% for occupancy and stability predictions, respectively) and is thus selected for predicting these two 
properties. The PCA classification results regarding the effect of TM dopant occupancy and the stability of 
L12 are shown in Figure 3 and their interpretation degrees are 92.05% and 93.44%, respectively. All the 
parameters of the ML algorithm are shown in Supplementary Table 2.

Predicting mechanical properties of L12 structure
The mechanical properties of the L12 phase in the new Co-based superalloys are the most important 
indicators of alloy properties. There are two routes for predicting them, as shown in Supplementary Figure 
2. Route I sets C11, C12 and C44 as Y and calculates the mechanical properties, including B, G and E. Route II 
directly computes the mechanical properties, including B, G and E.

Route I: We start by presenting the results using route I. The performances of each regression algorithm are 
shown in Supplementary Figure 1. AdaBoost is found to outperform the others in predicting C11 and C44, 
considering the highest R values of 0.8880 and 0.8726 with the lowest MAE values of 7.5720 and 3.1180 and 
the lowest RMSE values of 10.110 and 3.9663, respectively. The performance of each ML model in 
predicting C12 is relatively poor since its highest R value only reaches 0.6628 (see Supplementary Figure 3A-
F). Supplementary Figure 3G-I show the prediction results of the AdaBoost regression model for C11, C12 
and C44, which further proves that the prediction accuracy of the C12 model is low. B, G and E are calculated 
by C11, C12 and C44, and because of the low accuracy of C12, the error of the B, G and E values calculated by 
the equations will be further amplified. Therefore, it is not needed to show the results of B, G and E.

Route II: Next, we present the results of the mechanical property predictions using route II. The 
performances of each ML algorithm are shown in Figure 4A-F. Compared with the rest of the ML models, 
the AdaBoost regression model has the best performance for B, G and E, with the highest R values of 0.8372, 
0.9364 and 0.9354, the lowest MAE values of 2.4108, 1.8235 and 4.1253 and the lowest RMSE values of 
5.1536, 2.5603 and 6.0385, respectively. The results of the predictions made using the AdaBoost regression 
algorithm are shown in Figure 4G-I.

Selection between two routes: Figure 5 compares the performance of the two routes. It can be found that the 
precision of C12 is relatively low and its highest R value only reaches 0.6628 in route I. The error of C11 is 
relatively large and its lowest MAE and RMSE values are 7.5720 and 10.110, respectively, which are much 
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Figure 3. Ranking of prediction accuracies of (A) dopant occupancy and (B) L12 phase stability by different models. The GBC model has 
the highest accuracy (up to 88.52% and 93.44%, respectively). Prediction results of (C) occupied sites and (D) L12 phase stability from 
the model based on the GBC algorithm on the training set. Three features (main features #1, #2 and #3) are selected out of 25 using 
PCA for visualization (accuracy is 88.52%).

larger than those of other mechanical property prediction models. The value errors of B, G and E were 
calculated based on the predicted C11, C12 and C44 values using Eqs. (7)-(12) will be further enlarged. 
Therefore, the prediction results of C11, C12 and C44 are not discussed below.

Feature importance
The relative importance of different features on the dopant occupancy, stability of the L12 structures and the 
mechanical properties of the L12 phase are extracted from the gradient boosting classification and AdaBoost 
regression models, as shown in Figure 6. The names of the features are too long to be directly reflected in 
the figure and we therefore use codes to represent the full feature names, which are provided in 
Supplementary Table 3.

The first ionization energy and electronegativity quantify the attraction between atoms and affect the 
distortion of the supercell, and are thus capable of evaluating the occupancy of a dopant in the supercell[63]. 
The covalent radius of a dopant affects the stability of the supercell[62]. The melting and boiling points of a 
dopant and the mechanical properties (such as bulk, shear and elastic moduli[64]) are correlated. It can be 
seen from Figure 6A that the values of relative importance for the electronegativity and the first ionization 
energy of the dopant are the highest, indicating that these two features predominantly determine the 
occupancy of the doped atom. Similarly, Figure 6B shows that the covalent radius and the first ionization 

5168-SupplementaryMaterials.pdf
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Figure 4. Model performance of each regression model in terms of R, R2, MAE and RMSE on the training set by 10-fold cross-validation 
(route II): (A) R and R2 and (B) MAE and RMSE of bulk modulus (B); (C) R and R2 and (D) MAE and RMSE of shear modulus (G); (E) R 
and R2 and (F) MAE and RMSE of elastic modulus (E). Prediction results of mechanical properties of L12 phase in Co-based superalloys 
based on AdaBoost regression model (route II). The x-axis represents the true value and the y-axis represents the predicted value. 
When the true value is equal to the predicted value, the data will be distributed on a dashed line that passes through the origin and the 
slope of the dashed line is 1: (G) B; (H) G; (I) E.

Figure 5. Comparison of model performance of two routes based on Adaboost regression models. The warm color system (including 
vermeil, red and orange bars) represents the model performance of route I, while the cool color system (including blue, turquoise and 
cyan bars) represents the model performance of route II. (A) R and R2 of Adaboost regression models. (B) MAE and RMSE of Adaboost 
regression models.

energy of the dopant determine the stability of the L12 phase. Figure 6C indicates that the melting and 
boiling points of the dopant have the greatest influence on the mechanical properties, including the bulk, 
shear and elastic moduli.

Application of ML models for Co-based superalloys
The L12 phase exists at high temperatures in the Co-Al-W-, Co-V-Ti- and Co-V-Ir-based systems[1,6,65]. 
Building a new alloy system based on the properties of the major alloying elements is highly desirable. Ta 
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Figure 6. Calculated relative importance of different features on (A) dopant occupancy prediction based on gradient boosting 
classification model; (B) the stability of L12 structure prediction based on gradient boosting classification model; (C) bulk modulus 
prediction based on Adaboost regression model; (D) shear modulus prediction based on Adaboost regression model and (E) elastic 
modulus prediction based on Adaboost regression model. The ranking of the features is in accord with the related references.

can increase the L12 solvus temperature, while V can improve the strength of the alloy[66-68]. Herein, the 
trained ML models are employed to predict the crystal structure and mechanical properties of the L12 phase 
in new alloy systems containing V and Ta elements, such as the Co-V-Ta- and Co-Al-V-based systems. The 
prediction precision of the ML models without information for the Co-V-Ta- and Co-Al-V-based systems 
is usually low, so it is necessary to modify the models. The ML model modification precision is shown in 
Table 1.

Co-V-Ta- and Co-Al-V-based systems
A rule is established where each round of random calculation verifies three data points for evaluating the 
model performance. In order to verify the prediction capability of the model for an unknown system, the 
calculated results of the Co-V-Ta-based system are added to the previous trained models as a new training 
set and the optimized models are used to predict the new Co-Al-V-based system. Through one round of 
iteration, the accuracy of the ML model for predicting dopant occupancy in the Co-V-Ta-based system is 
improved from 66.67% to 100%. The accuracy of the prediction in the Co-Al-V-based system reaches 100%, 
i.e., the model does not need to be modified. In addition, in order to verify the generalization ability of the 
ML model, we use first-principles calculations to compute the rest of the data that have not yet been 
verified. The results are compared with those predicted using the improved ML model. The results show 
that the prediction accuracy is improved from 80.00% to 95.00% for the Co-V-Ta-based system after only 
one-time model optimization. The accuracy of the Co-Al-V-based system is 95.24%. The PCA classification 
effect of the model is shown in Figure 7. The interpretation degrees of the Co-V-Ta- and Co-Al-V-based 
systems are 88.37% and 88.51%, respectively.

The accuracy of the ML model for predicting the L12 phase stability in the Co-V-Ta-based system is 
improved from 66.67% to 100% through a one-round iteration. The accuracy of the prediction in the Co-Al-
V-based system reaches 100%, i.e., the model does not need to be modified. As before, we use first-
principles calculations to compute the rest of the data that have not yet been verified. The verified results 
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Table 1. Precision standard of ML model modification

Prediction model Indicator Precision requirement of three pieces of data

Dopant occupancy models Accuracy 100%

L12 phase stability prediction models Accuracy 100%

R > 0.9

MAE < 5

Mechanical property prediction models

RMSE < 5

Figure 7. PCA classification result of occupied site prediction model based on GBC algorithm after one round of modification: (A) 
original Co-V-Ta-based system (accuracy reaches 80.00%); (B) modified Co-V-Ta-based system (accuracy reaches 95.00%); (C) 
original Co-Al-V-based system (accuracy reaches 95.24%).

show that the accuracy of model prediction in the Co-V-Ta-based system after one round of iteration is 
improved from 70.00% to 95.00%. The results show that the model predictions in the Co-Al-V-based system 
are all correct. The display effect of the PCA classification effect of the models is shown in Figure 8. The 
interpretation degrees of the Co-V-Ta- and Co-Al-V-based systems are 88.37% and 89.12%, respectively. It 
can be found that the modified gradient boosting algorithm is capable of making accurate predictions for 
both the occupancy of TM dopants and the stability of the L12 phase for both the Co-V-Ta- and Co-Al-V-
based systems.

The iterative processes for improving the accuracy of the ML for predicting the mechanical property L12 
phase are shown in Supplementary Figure 4. It can be found that the accuracy of model prediction is 
significantly improved.

The optimization processes of the ML models for predicting the mechanical properties of the L12 phase in 
the Co-V-Ta- and Co-Al-V-based systems are shown in Supplementary Figures 5 and 6, respectively. For a 
small amount of predicted data, it can be seen that the performance of the B, G and E models is significantly 
improved after only two rounds of model optimization. Specifically, through model optimization, the R 
values of B, G and E increase from 0.51937, 0.74161 and 0.9849 to 0.9852, 0.9801 and 0.9988, respectively. 
The MAE values of B, G and E decrease from 16.086, 13.693 and 31.824 to 1.5217, 1.2534 and 1.0340, 
respectively. The RMSE values decrease from 16.587, 13.729 and 31.858 to 1.8555, 1.4714 and 1.6157, 
respectively. The prediction accuracy of the B and G prediction models is low and the error of the E 
prediction model is relatively large before the models are modified. Compared with the Co-V-Ta-based 
system, the model performance of B, G and E can be greatly improved after only one round of modification. 
The R values of B, G and E increase from 0.9156, 0.7714 and 0.7807 to 0.9214, 0.9219 and 0.9981, 
respectively. The MAE values of B, G and E decrease from 13.283, 16.779 and 38.252 to 2.7629, 3.5654 and 
4.3063, respectively. The RMSE values decrease from 13.398, 17.206 and 39.315, to 3.2245, 4.6005 and 
4.7053, respectively. The prediction accuracy of the G prediction models is low and the error of the E 

5168-SupplementaryMaterials.pdf
5168-SupplementaryMaterials.pdf
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Figure 8. Display effect of PCA classification effect of L12 phase stability prediction model based on GBC algorithm after one round of 
modification: (A) original Co-V-Ta-based system (accuracy reaches 70.00%); (B) modified Co-V-Ta-based system (accuracy reaches 
95.00%); (C) original Co-Al-V-based system (accuracy reaches 100%).

prediction model is relatively large before the models are modified. In order to verify the generalization 
ability of the ML model, we calculate all the remaining data and verify the ML prediction results after two 
rounds of modification.

Figure 9 shows the overall prediction results of the modified mechanical performance models of the Co-V-
Ta- and Co-Al-V-based systems and their model performances are shown in Figure 10. For the Co-V-Ta-
based system, the R values of the B, G and E prediction models are 0.9556, 0.9114 and 0.9527, respectively, 
the MAE values are 2.4105, 1.8124 and 4.7547, respectively, and the RMSE values are 2.9600, 2.1988 and 
5.6657, respectively. For the Co-Al-V-based system, the R values of the B, G and E prediction models are 
0.9241, 0.9369 and 0.9369, respectively, the MAE values are 2.6882, 3.6844 and 6.4382, respectively, and the 
RMSE values are 3.4099, 4.4704 and 8.2324, respectively. Compared with the Co-V-Ta-based system, the 
modified Adaboost regression models have better prediction performance for the Co-Al-V-based system, 
which further proves that the ML model is capable of predicting the crystal structure and mechanical 
properties of the L12 phase in new Co-based superalloys.

Comparison of time cost and mechanical properties 
It takes about two days for traditional first-principles calculations to compute a data point, while 
establishing a ML model requires five days. However, it takes less than a minute for the trained ML models 
to predict the calculation results. By comparing the calculation amount and time between the modified ML 
models and the traditional first-principles calculations, we find the prediction method based on ML 
algorithms can improve the calculation efficiency by more than double using the modified ML model, as 
shown in Table 2.

Comparison of the predicted B, G and E values for the Co-V-Ta-X and Co-Al-V-X systems with those for 
previous Co-Al-W-X and Co-V-Ti-X systems are shown in Figure 11. It can be seen that the mechanical 
properties of the Co-V-Ta-X and Co-Al-V-X system are generally higher than those of Co-Al-W-X and Co-
V-Ti-X systems, except for the cases with Y, Zr and Re dopants. Using ML algorithms combined with first-
principles calculations, two new systems (Co-V-Ta-X and Co-Al-V-X) with better mechanical properties 
than the previous systems are successfully and efficiently proposed.

SUMMARY
This work aims to address the challenges encountered by the traditional experimental approaches and first-
principles calculation methods for the discovery of new Co-based superalloys (strengthened by L12 ordered 
precipitates), both of which are inefficient, time-consuming and labor-intensive when used alone.



Page 15 of Xi et al. J Mater Inf 2022;2:15 https://dx.doi.org/10.20517/jmi.2022.22 20

Table 2. Comparison of time costs for first-principles calculations alone and ML-accelerated first principles calculations

Task Time

Traditional DFT method First-principles calculations 92 days

First-principles calculations 22 days

Establish ML models 5 days

ML prediction 1 minute

ML-accelerated method

Total 27 days

Figure 9. Overall prediction results of modified mechanical performance models: (A) B; (B) G and (C) E of Co-V-Ta-based system; (D) B
; (E) G and (F) E of Co-Al-V-based system.

A new approach is proposed that combines machine learning (ML) and first-principles calculations to speed 
up the prediction of crystal structure, phase stability and mechanical properties for systems, such as Co-V-
Ta- and Co-Al-V-based alloys. This information is critical for developing new Co-based superalloys with 
superior properties at elevated temperatures. ML models are established and trained for predicting the site 
occupancy, phase stability and mechanical properties. Through iterative interactions between model 
predictions and validations using first-principles calculations, the ML models are further improved. Finally, 
the refined models are used to make accurate predictions for the crystal structure and mechanical properties 
for Co-V-Ta- and Co-Al-V-based systems.

The combination of ML and first-principles calculations may shed light on the rapid prediction of crystal 
structure and mechanical properties of other advanced materials beyond Co-based alloys.
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Figure 10. Model performance of optimized ML models for predicting mechanical properties of L12 phase. Accuracy metrics (A) R and R
2 and (B) MAE and RMSE of Co-V-Ta-based system and (C) R and R2 and (D) MAE and RMSE of Co-Al-V-based system using 
Adaboost regression models.
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Figure 11. Mechanical property comparison of predicted Co-V-Ta-X and Co-Al-V-X systems with data in Ref.[57] for Co-Al-W-X and 
data in Ref.[49] for Co-V-Ti-X system: (A) bulk modulus; (B) shear modulus; (C) elastic modulus.
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