Machine learning accelerated first-principles predictions of the stability and mechanical property of L1₂-strengthened Cobalt-based superalloy

Shengkun Xi^{a,1}, Jinxin Yu^{a,1}, Longke Bao^a, Liuping Chen^a, Zhou Li^a, Rongpei Shi^{a***}, Cuiping Wang^{b**}, Xingjun Liu^{a, b, c*}

- a. School of Materials Science and Engineering, and Institute of Materials
 Genome and Big Data, Harbin Institute of Technology, Shenzhen, 518055, PR
 China
- b. College of Materials and Fujian Provincial Key Laboratory of Materials Genome, Xiamen University, Xiamen, 361005, PR China
- c. State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Shenzhen, 518055, PR China

Table S1 Data of Co-Al-W-X, Co-V-Ti-X and Co-V-Ir-X systems for training machine learning models.

main	main	main	TM	Occu	Struct	C	C ₁₂	C ₄₄	В	G	Е
#1	#2	#3		pancy	ure	C_{11}					
Co	Al	W	Sc	Al	$L1_2$	323	182	176	229	122	311
Co	Al	W	Ti	Al	$L1_2$	336	190	183	239	126	323
Co	Al	W	V	Al	$L1_2$	360	184	188	243	139	349
Co	Al	W	Cr	Al	$L1_2$	373	182	192	245	145	364
Co	Al	W	Mn	Al	$L1_2$	358	175	182	234	138	345
Co	Al	W	Fe	Co	D0 ₁₉	-	-	-	-	-	-
Co	Al	W	Ni	Co	$L1_2$	294	174	171	214	113	287

* Correspondance to: Xingjun Liu.

** Correspondance to: Cuiping Wang.

*** Correspondance to: Rongpei Shi.

¹ Shengkun Xi and Jinxin Yu contributed equally to this work.

E-mail address : xjliu@hit.edu.cn (Xingjun Liu), wangcp@xmu.edu.cn (Cuiping Wang), shirongpei@hit.edu.cn (Rongpei Shi)

Co	Al	W	Y	Al	D0 ₁₉	-	-	-	-	-	-
Co	Al	W	Zr	Al	$L1_2$	331	183	178	232	125	318
Co	Al	W	Nb	Al	$L1_2$	360	183	186	242	138	348
Co	Al	W	Mo	Al	$L1_2$	372	181	186	245	142	358
Co	Al	W	Tc	Al	$L1_2$	377	179	189	245	145	364
Co	Al	W	Ru	Co	D0 ₁₉	-	-	-	-	-	-
Co	Al	W	Rh	Co	$L1_2$	305	189	176	227	113	291
Co	Al	W	Pd	Co	D0 ₁₉	-	-	-	-	-	-
Co	Al	W	Hf	Al	$L1_2$	333	187	178	235	124	317
Co	Al	W	Ta	Al	$L1_2$	369	190	187	250	139	352
Co	Al	W	Re	Al	$L1_2$	383	184	192	250	147	369
Co	Al	W	Os	Al	$L1_2$	378	179	189	245	146	366
Co	Al	W	Ir	Co	$L1_2$	318	197	178	237	116	299
Co	Al	W	Pt	Co	$L1_2$	307	192	177	230	113	291
Co	V	Ti	Cr	Ti	$L1_2$	364	175	184	238	141	353
Co	V	Ti	Ir	Co	$L1_2$	344	176	175	232	130	329
Co	V	Ti	Mo	Ti	$L1_2$	363	174	181	237	139	350
Co	V	Ti	Nb	Ti	$L1_2$	350	174	174	233	132	334
Co	V	Ti	Ni	Co	$L1_2$	343	172	172	229	130	328
Co	V	Ti	Os	Co	$L1_2$	345	179	170	234	127	324
Co	V	Ti	Re	Ti	$L1_2$	382	191	184	254	141	358
Co	V	Ti	Ru	Co	$L1_2$	335	177	170	230	125	318
Co	V	Ti	Ta	Ti	$L1_2$	351	176	175	234	132	335
Co	V	Ti	W	Ti	$L1_2$	366	177	183	240	140	352
Co	V	Ti	Fe	Co	$L1_2$	337	171	171	226	128	323
Co	V	Ti	Hf	Ti	$L1_2$	336	170	166	226	125	318
Co	V	Ti	Mn	Co	$L1_2$	326	168	166	221	123	311
Co	V	Ti	Pd	Co	$L1_2$	335	171	169	226	126	320

Co	V	Ti	Pt	Co	$L1_2$	344	173	173	230	130	330
Co	V	Ti	Rh	Co	$L1_2$	341	175	173	230	129	326
Co	V	Ti	Sc	Ti	$L1_2$	312	171	164	218	116	297
Co	V	Ti	Tc	Ti	$L1_2$	368	175	185	240	142	356
Co	V	Ti	Y	Ti	$L1_2$	286	159	150	201	105	270
Co	V	Ti	Zr	Ti	$L1_2$	332	166	163	222	124	315
Co	V	Ir	Sc	V	D0 ₁₉	-	-	-	-	-	-
Co	V	Ir	Ti	Co	D0 ₁₉	-	-	-	-	-	-
Co	V	Ir	Cr	Co	D0 ₁₉	-	-	-	-	-	-
Co	V	Ir	Mn	Co	D0 ₁₉	-	-	-	-	-	-
Co	V	Ir	Fe	Co	D0 ₁₉	-	-	-	-	-	-
Co	V	Ir	Ni	Co	D0 ₁₉	-	-	-	-	-	-
Co	V	Ir	Y	V	D0 ₁₉	-	-	-	-	-	-
Co	V	Ir	Zr	V	D0 ₁₉	-	-	-	-	-	-
Co	V	Ir	Nb	Co	D0 ₁₉	-	-	-	-	-	-
Co	V	Ir	Mo	Co	D0 ₁₉	-	-	-	-	-	-
Co	V	Ir	Tc	Co	D0 ₁₉	-	-	-	-	-	-
Co	V	Ir	Ru	Co	D0 ₁₉	-	-	-	-	-	-
Co	V	Ir	Rh	Co	D0 ₁₉	-	-	-	-	-	-
Co	V	Ir	Pd	Co	D0 ₁₉	-	-	-	-	-	-
Co	V	Ir	Hf	V	D0 ₁₉	-	-	-	-	-	-
Co	V	Ir	Та	Co	D0 ₁₉	-	-	-	-	-	-
Co	V	Ir	W	Co	D0 ₁₉	-	-	-	-	-	-
Co	V	Ir	Re	Ir	D0 ₁₉	-	-	-	-	-	-
Co	V	Ir	Os	Co	D0 ₁₉	-	-	-	-	-	-
Co	V	Ir	Pt	Co	D0 ₁₉	-	-	-	-	-	-

For the mechanical properties of $D0_{19}$ structure is more stable than $L1_2$ structure.

the mechanical properties of $L1_2$ phase are meaningless.

Models	n_estimators	max_depth	max_features
Occupied sites prediction model	150	5	8
Stability prediction model	100	9	1
C ₁₁ prediction model	200	7	4
C ₁₂ prediction model	200	6	7
C ₄₄ prediction model	200	4	6
Bulk modulus prediction model	250	7	4
Shear modulus prediction model	250	5	8
Elastic modulus prediction model	250	6	5

Table S2 Parameters of machine learning models

Table S3 Correspondence between full name of features and codes

Feature full name	Doping element	Main Element #2	Main Element #3		
Melting Point	1A	2A	3A		
Boiling Point	1B	2B	3B		
Density	1C	2C	3C		
Relative Atomic Mass	1D	2D	3D		
Atomic Radius,	11	25	20		
Non-bonded	IE	2E	3E		
Covalent Radius	1F	2F	3F		
Electronegativity	1G	2G	3G		
1st Ionization Energy	1H	2Н	3Н		
Occupied Position	1J	_	_		

Fig. S1 Schematic illustration of the interaction between ML model and first-principles calculations for iteratively improving ML model performance.

Start	Machine learning Elastic constant C ₁₁ , C ₁₂ and C ₄₄	Calculate by formula	Mechanical properties B, G and E	Route I
L	Machine learning	5		Route II

Fig. S2 Two routes for predicting mechanical properties of L1₂ phase. Route I sets C_{11} , C_{12} and C_{44} as Y, and calculates the mechanical properties including B, G, E according the formulars; Route II computes mechanical properties including B, G, E directly.

Fig. S3 The model performance of each regression model in terms of the $R \,{}_{\times} R^2 \,{}_{\times} MAE$ and *RMSE* on the training set by 10-fold cross-validation (Route I). (a) R, R^2 and (b) *MAE*, *RMSE* of C_{11} , (c) R, R^2 and (d) *MAE*, *RMSE* of C_{12} , (e) R, R^2 and (f) *MAE*, *RMSE* of C_{44} .; Predictions on the mechanical properties of L1₂ phase in Co-based superalloys based on AdaBoost Regression model (Route I). The X axis represents the true value, and the Y axis represents the predicted value. When the true value is equal to the predicted value, the data will be distributed on a dashedline that passes through the origin, and the slope of the dashed line is 1. (g) C_{11} , (h) C_{12} , (i) C_{44}

Fig. S4 The optimization process of the mechanical property prediction models of $L1_2$ phase. The red, green and blue data points represent the prediction results of the machine learning model without modified, modified once, modified twice, respectively. The results should be compared with first-principles calculations. (a) **B**, (b) **G**, and (c) **E** of Co-V-Ta-based system; (d) **B**, (e) **G**, and (f) **E** of Co-Al-V-based system

Fig. S5 The optimization process of model performance of mechanical properties prediction model of L1₂ phase in Co-V-Ta-based system. The red, green and blue bars represent the prediction results of the machine learning model without modified, modified once, modified twice, respectively. (a) *R* and R^2 and (b) *MAE* and *RMSE* of Bulk modulus (**B**), (c) *R* and R^2 and (d) *MAE* and *RMSE* of Shear modulus (**G**), (e) *R* and R^2 and (f) *MAE* and *RMSE* of Young's modulus (**E**)

Fig. S6 The improvement process of model performance of mechanical properties prediction model of L1₂ phase in Co-Al-V-based system. The red and green bars represent the prediction results of the machine learning model without modified and modified once, respectively. The results should be compared with first-principles calculations. (a) *R* and R^2 and (b) *MAE* and *RMSE* of Bulk modulus (**B**), (c) *R* and R^2 and (d) *MAE* and *RMSE* of Shear modulus (**G**), (e) *R* and R^2 and (f) *MAE* and *RMSE* of Young's modulus (**E**)

Calculation methods

The elastic constant (*C*) can be written in the form of a 6×6 matrix:

$$\sigma_{i} = \sum_{j} C_{ij} \times \varepsilon_{j} = \begin{pmatrix} \sigma_{1} \\ \sigma_{2} \\ \sigma_{3} \\ \sigma_{4} \\ \sigma_{5} \\ \sigma_{6} \end{pmatrix} = \begin{pmatrix} C_{11} & C_{12} & C_{13} & C_{14} & C_{15} & C_{16} \\ C_{21} & C_{22} & C_{23} & C_{24} & C_{25} & C_{26} \\ C_{31} & C_{32} & C_{33} & C_{34} & C_{35} & C_{36} \\ C_{41} & C_{42} & C_{43} & C_{44} & C_{45} & C_{46} \\ C_{51} & C_{52} & C_{53} & C_{54} & C_{55} & C_{56} \\ C_{61} & C_{62} & C_{63} & C_{64} & C_{65} & C_{66} \end{pmatrix} \times \begin{pmatrix} \varepsilon_{1} \\ \varepsilon_{2} \\ \varepsilon_{3} \\ \varepsilon_{4} \\ \varepsilon_{5} \\ \varepsilon_{6} \end{pmatrix}, \quad (4)$$

where σ_i , ε_i and C_{ij} donate the stress, strain and elastic constants, respectively. The strain characterized by the tensor $\varepsilon = (\varepsilon_1, \varepsilon_2, \varepsilon_3, \varepsilon_4, \varepsilon_5, \varepsilon_6)$ is applied on the supercell to produce an infinitesimal deformation. The stress is defined as the first derivative of the total elastic strain energy with respect to the corresponding strain. The stress tensors $\sigma = (\sigma_1, \sigma_2, \sigma_3, \sigma_4, \sigma_5, \sigma_6)$ will be generated after the crystal structure is deformed by the strain ε .

Because of the cubic symmetry, only three independent elastic constants \bar{C}_{11} , \bar{C}_{12} and \bar{C}_{44} are required to describe the elastic constants. The \bar{C}_{11} , \bar{C}_{12} and \bar{C}_{44} can be calculated as follows[1]:

$$\bar{C}_{11} = (C_{11} + C_{22} + C_{33})/3$$
 $\bar{S}_{11} = (S_{11} + S_{22} + S_{33})/3,$ (5)

$$\bar{C}_{12} = (C_{12} + C_{13} + C_{23})/3$$
 $\bar{S}_{12} = (S_{12} + S_{13} + S_{23})/3,$ (6)

$$\bar{C}_{44} = (C_{44} + C_{55} + C_{66})/3$$
 $\bar{S}_{44} = (S_{44} + S_{55} + S_{66})/3,$ (7)

where \bar{S}_{ij} is flexible constant matrix. The \bar{S}_{ij} can be obtained by inverting the elastic constant matrix \bar{C}_{ij} .

The elastic properties of the L1₂ phase are characterized via the Voigt-Reuss-Hill (VRH) approximation as follows[2]-[4]:

$$B_{v} = (\bar{C}_{11} + 2\bar{C}_{12})/3 \qquad B_{R} = 1/(3\bar{S}_{11} + 6\bar{S}_{12}), \qquad (8)$$

$$G_{\nu} = (\bar{C}_{11} - \bar{C}_{12} + 3\bar{C}_{44})/5 \qquad G_R = 5/(4\bar{S}_{11} - 4\bar{S}_{12} + 3\bar{S}_{44}), \tag{9}$$

$$E_{\nu} = (9B_{\nu}G_{\nu})/(3B_{\nu} + G_{\nu}) \qquad E_{R} = (9B_{R}G_{R})/(3B_{R} + G_{R}), \tag{10}$$

$$B = (B_{\nu} + B_R)/2, \tag{11}$$

$$G = (G_v + G_R)/2,$$
 (12)

$$E = (E_v + E_R)/2,$$
 (13)

Reference

[1] Xi S, Chen L, Bao L, Han J, Yu J, Li Z, Xu W, Deng B, Wang C, Liu X. Effects

of alloying elements on the atomic structure, elastic and thermodynamic properties of $L1_2$ -Co₃(V, Ti) compound. Materials Today Communications 2022; 102931.

- [2] Chung D. Elastic moduli of single crystal and polycrystalline MgO. Philosophical Magazine 1963;8: 833-841.
- [3] Anderson O. A simplified method for calculating the Debye temperature from elastic constants. Journal of Physics and Chemistry of Solids 1963; 24: 909-917.
- [4] Chung D, Buessem W. The Voigt Reuss Hill (VRH) approximation and the elastic moduli of polycrystalline ZnO, TiO₂ (Rutile), and α Al₂O₃. Journal of applied physics 1968; 39(6): 2777-2782.