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Characterization methods 18 
The phase data were analyzed by X-ray powder diffraction (XRD) on an MMA diffractometer equipped 19 
with Cu Kα radiation (GBC, MMA), which operated from 10˚ to 80˚ in continuous scan mode with a 20 
scan rate of 1˚ min-1. X-ray photoelectron spectroscopy (XPS) experiments were carried out on a VG 21 
Scientific ESCALAB 2201XL instrument using aluminum Kα X-ray radiation. X-ray absorption studies 22 
(XAS) were performed at the BL11B beamline at the Shanghai Synchrotron Radiation Facility (SSRF), 23 
Shanghai, PR China. Raman spectra were collected on a JOBIN YVON HR800 Confocal Raman System 24 
with 632.8 nm diode laser excitation on a 300 lines mm-1 grating under ambient conditions. The specific 25 
surface areas were determined using the Brunauer-Emmett-Teller (BET, Micro for TriStar II Plus 2.02) 26 
method, with a degassing pretreatment of N2 at 200 °C for 24 h. The structure and morphology of the 27 
sample were investigated on a field emission scanning electron microscope (FESEM; JEOL JSM-7500) 28 
and a transmission electron microscope (TEM; JEOL-2010). Atomic resolution analytical microscope 29 
investigations were conducted using scanning TEM (STEM; JEOL ARM 200F), which was operated at 30 
80 kV and equipped with a cold field emission high-resolution pole piece and a Centurio energy 31 
dispersive spectroscopy (EDS) detector. The electrochemical operando ATR-SEIRAS was measured by 32 
INVENIO R FTIR spectrometer (Bruker) equipped with a mercury-cadmium-telluride (MCT) detector. 33 
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 35 

Supplementary Figure 1. Standard curves. (A) UV-Vis absorption spectra of NH3 standard solutions; 36 
(B) Calibration curve for colorimetric NH3 assay using salicylic acid. 37 

 38 

 39 

Supplementary Figure 2. N2 adsorption and desorption isotherms of MoS2 and Fe@MoS2. 40 

 41 

 42 
Supplementary Figure 3. CV curves of (A) MoS2, (B) Fe@MoS2 at potential from 0.75 V to 0.85 V at a 43 
scan rate of 2, 4, 6, 8, 10 mV s-1. (C) The measured capacitive currents are plotted as a function of the 44 
scan rate.   45 
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 47 

Supplementary Figure 4. STEM image of A) Fe@MoS2, and B) the corresponding Fourier transform. 48 

 49 

 50 

Supplementary Figure 5. The corresponding EXAFS fitting curves of Fe@MoS2. 51 

 52 

 53 

 54 

Supplementary Figure 6. Long-term stability test of Fe@MoS2. 55 

 56 
Supplementary Table 1. BET surface area and pore volume of ENRR catalysts. 57 

ENRR catalysts MoS2 Fe@MoS2 

Specific area (m2 g-1) 22.63 54.034 

Pore volume (cm3 g-1) 0.09 0.32 

 58 

Supplementary Table 2. Fe K-edge EXAFS curve Fitting Parameter. 59 
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Fig. S12. The corresponding EXAFS fitting curves of Fe@MoS2.
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Fe Foil Fe-Fe1 8.0 1.96±0.03 2.3±0.5 0.004 

Fe-Fe2 6.0 2.67±0.01 2.3±0.5 

Fe@MoS2 Fe-S 5.5±0.4 2.29±0.05 3.3±0.7 0.004 

Fe-Mo 0.7±0.1 2.83±0.025 1.9±0.5 

 60 

Supplementary Table 3. Comparison of ENRR performance.  61 

Catalysts Electrolyte Yield Rate FE (%) Ref 

Fe@MoS2 0.25 M LiClO4 20.20 μg h−1mg−1 19.7% This work 

MoS2/BCCF 0.1 M Li2SO4  43.4 μg h−1mg−1  9.81% [1] 

MoS2/C3N4 0.1 M Na2SO4 19.86 μg h−1mg−1 6.87% [2] 

Cu2-xS/MoS2 0.1 M Na2SO4 22.1 μg h−1mg−1 6.06% [3] 

SnS2/MoS2 0.1 M Li2SO4 34.3 μg h−1mg−1 13.8% [4] 

VS-MoS2 0.1 M Na2SO4 29.55 μg h−1mg−1 4.58% [5] 

VS-Fe-MoS2/C 0.1 M LiClO4 17.8 μg h−1mg−1 9.2% [6] 

Fe–MoS2/CC 0.1 M KOH 12.5 μg h−1mg−1 10.5% [7] 

MoS2 NDs/RGO 0.1 M Na2SO4 16.41 μg h−1mg−1 27.93% [8] 

MoS2–rGO 0.1 M LiClO4 24.82 μg h−1mg−1 4.58% [9] 

MoS2/CC 0.1 M Na2SO4 5.23 μg h−1mg−1 1.17% [10] 

 62 
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