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Characterization methods

The phase data were analyzed by X-ray powder diffraction (XRD) on an MMA diffractometer equipped
with Cu Ka radiation (GBC, MMA), which operated from 10° to 80° in continuous scan mode with a
scan rate of 1° min"!. X-ray photoelectron spectroscopy (XPS) experiments were carried out on a VG
Scientific ESCALAB 2201XL instrument using aluminum Ko X-ray radiation. X-ray absorption studies
(XAS) were performed at the BL11B beamline at the Shanghai Synchrotron Radiation Facility (SSRF),
Shanghai, PR China. Raman spectra were collected on a JOBIN YVON HR800 Confocal Raman System
with 632.8 nm diode laser excitation on a 300 lines mm™' grating under ambient conditions. The specific
surface areas were determined using the Brunauer-Emmett-Teller (BET, Micro for TriStar II Plus 2.02)
method, with a degassing pretreatment of N at 200 °C for 24 h. The structure and morphology of the
sample were investigated on a field emission scanning electron microscope (FESEM; JEOL JSM-7500)
and a transmission electron microscope (TEM; JEOL-2010). Atomic resolution analytical microscope
investigations were conducted using scanning TEM (STEM; JEOL ARM 200F), which was operated at
80 kV and equipped with a cold field emission high-resolution pole piece and a Centurio energy
dispersive spectroscopy (EDS) detector. The electrochemical operando ATR-SEIRAS was measured by
INVENIO R FTIR spectrometer (Bruker) equipped with a mercury-cadmium-telluride (MCT) detector.
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36  Supplementary Figure 1. Standard curves. (A) UV-Vis absorption spectra of NH3 standard solutions;
37 (B) Calibration curve for colorimetric NH3 assay using salicylic acid.
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40 Supplementary Figure 2. N2 adsorption and desorption isotherms of MoS; and Fe@MoS;.
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43 Supplementary Figure 3. CV curves of (A) MoS;, (B) Fe@MoS: at potential from 0.75V t0 0.85 V at a
44 scan rate of 2, 4, 6, 8, 10 mV s*. (C) The measured capacitive currents are plotted as a function of the
45 scan rate.
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Supplementary Figure 5. The corresponding EXAFS fitting curves of Fe@MoS:.
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Supplementary Figure 6. Long-term stability test of Fe@MoS,.

Supplementary Table 1. BET surface area and pore volume of ENRR catalysts.

ENRR catalysts MoS; Fe@MoS;
Specific area (m? g?) 22.63 54.034
Pore volume (cm?g?) 0.09 0.32
Supplementary Table 2. Fe K-edge EXAFS curve Fitting Parameter.
Sample C.N. RA) 62x10° (A?) R factor
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Fe Foil Fe-Fel 8.0 1.96+0.03 2.3£05 0.004
Fe-Fe2 6.0 2.67+0.01 2.3+0.5

Fe@MoS, Fe-S 5.5+04 2.29+0.05 3.3£0.7 0.004
Fe-Mo 0.7+0.1 2.83+0.025 1.9+0.5

Supplementary Table 3. Comparison of ENRR performance.

Catalysts Electrolyte Yield Rate FE (%) Ref
Fe@MoS; 0.25 M LiClO4 20.20 pgh'mg™'  19.7% This work
MoS,/BCCF 0.1 M Li2SOq4 434 ugh'mg?  9.81% (i
MoS2/C3N, 0.1 M Na,SO4 1986 pgh'mg!  6.87%
Cuz+S/MoS: 0.1 M Na,SO4 2.1pgh'mg!  6.06% B
SnS»/MoS; 0.1 M Li»SO4 343 pugh'mg! 13.8% W
Vs-MoS; 0.1 M Na,SO4 29.55 ugh'mg™!  4.58% 5]
VS-Fe-MoS,/C 0.1 M LiClO4 17.8 ugh'mg™?  9.2% (6]
Fe-MoS,/CC 0.1 M KOH 125 ugh'mg™?  10.5% 7l
MoS; NDs/RGO 0.1 M NaySO4 16.41 pgh'mg™! 27.93% B
MoS2-1GO 0.1 M LiClO4 2482 pgh'mg! 4.58% 1)
MoS,/CC 0.1 M Na,SO4 523 ugh'mg?  1.17% (10]
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