Supplementary Materials

Up-conversion effect boosted NIR-driven photocatalytic solar fuel generation of NaYF4: Yb, Er decorated ZnIn₂S₄ flowers with rich Zn vacancies

Xuejing Li^{1,#}, Haiyue Wu^{1,#}, Shengyan Yin², Chenhao Yu², Yongzhi Shao², Donglei Zhou^{2,*}, Ping She^{1,2,*}

¹State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, International Center of Future Science, Jilin University, Changchun 130012, Jilin, China.
²State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, Jilin, China.
[#]Authors contributed equally.

*Correspondence to: Dr. Ping She, State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, Jilin, China. E-mail: sheping@jlu.edu.cn; Dr. Donglei Zhou, State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Jilin University, 2699 Qianjin Street, Changchun 130012, Jilin, China. E-mail: zhoudl@jlu.edu.cn

1. Chemicals and Materials

Glycerol (Tianjin Fuyu Chemical Co., Ltd., AR); Deionized water (DI water); Ethanol (Tianjin Jingdongtianzheng Precision Chemical Reagent Factory, AR); Anhydrous Zinc chloride (ZnCl₂, Innochem, 98%); Indium chloride trihydrate (InCl₃·4H₂O, Innochem, 99.99%); Thioacetamide (TAA, Innochem, \geq 98%); Sodium hydroxide (NaOH, Tianjin Guangfu Fine Chemical Co., Ltd.); Ammonium Fluoride (NH₄F, Fuchen Chemical Reagent Co., Ltd.); Methyl Alcohol (Anhui Tedia High Purity Solvents Co., Ltd., AR); Erbium chloride hexahydrate (ErCl₃·6H₂O, Innochem, 99.99%); Ytterbium chloride hexahydrate (YbCl₃·6H₂O, Innochem, 99.99%); Yttrium chloride hexahydrate (YCl₃·6H₂O, Innochem, 99.9%); Octadecene (Innochem, 90%); Oleic Acid (Aladdin, AR); Cyclohexane (Innochem, 99.7%).

2. Preparation of ZIS

Firstly, 8 mL of H₂O (PH=2.5) and 1.5 g of glycerol were mixed and sonicated for 5 minutes. Then, 81.6 mg of ZnCl₂, 175.8 mg of InCl₃·4H₂O, and 90 mg of TAA were added to the above solution under continuous stirring. Subsequently, the solution was sonicated again and heated in an oil bath at 80 °C. After reacting for 1 hour, the suspension was centrifuged and washed with ethanol several times until the solution was neutral. Finally, the ZnIn₂S₄ (ZIS) was obtained after drying the precipitate overnight.

3. Preparation of Vzn-ZIS

Firstly, $ZnCl_2$ (50 mg), $InCl_3 \cdot 4H_2O$ (230 mg), TAA (240 mg), ethanol (15 mL), and DI water (15 mL) were mixed and sonicated to get a homogeneous solution. Secondly, the solution was transferred into 50 mL of stainless steel vessel followed by heating at 180 °C for 24 h. Finally, the $ZnIn_2S_4$ with Zn vacancy (V_{Zn} -ZIS) was obtained after washing and drying the product.

4. Preparation of UCNPs

Firstly, ErCl₃·6H₂O (7.6 mg), YbCl₃·6H₂O (77.5 mg), YCl₃·6H₂O, oleic acid (6 mL), and octadecene (15 mL) were mixed to obtain solution A. Secondly, NaOH (100 mg) and NH₄F (148 mg) were added to methyl alcohol (5 mL) and sonicated to obtain solution B. Subsequently, solution A was heated to 130 °C for 40-60 minutes under Ar

protection. Afterward, solution A was cooled naturally followed by dropping solution B under an Ar atmosphere and kept stirring for 15 minutes at room temperature. Then the mixed solution was heated to 125 °C to remove the methyl alcohol until no bubble could be seen on the surface of the solution. Then the above solution was heated under 300 °C for 1.5 hours with a condenser system. After cooling to room temperature, the above system was washed with cyclohexane and ethanol. The product (NaYF₄: 20%Yb, 2%Er) was denoted as UCNPs and stored in cyclohexane for further use.

Characterizations

The scanning electron microscopy (SEM) images and energy dispersive spectroscopy (EDS) images were obtained from JSM-7800F to evaluate the morphology of samples. Transmission electron microscope (TEM) and high-resolution TEM (HRTEM) were obtained from Tecnai G2 S-Twin F20 camera. X-ray diffraction (XRD) powder diffractometer was used to analyze the crystal phase (D/MAX2550 (Cu K α radiation, $\lambda = 1.5418$ Å). was. X-ray photoelectron spectroscopy (XPS) was obtained from ESCALAB 250 X-ray photoelectron spectrometer. UV-vis diffuse reflectance spectra (DRS) was measured on HITACHI U-4100 spectrometer to evaluate the absorbance of samples. Photoluminescence (PL) and PL decay curves were obtained from the FLUOROMAX-4 fluorescence spectrophotometer with an excitation wavelength of 350 nm. In-situ diffuse reflectance infrared Fourier-transform spectroscopy (DRIFT) spectroscopy was measured from 400 cm⁻¹ to 4000 cm⁻¹ on VERTEX 80v from Bruker.

Supplementary Figures

Supplementary Figure 1. (A) SEM image of ZIS; (B) is the enlargement of (A).

Supplementary Figure 2. (A) SEM image of V_{Zn}-ZIS; (B) is the enlargement of (A).

Supplementary Figure 3. SEM images (A and B) and TEM image (C) of UCNPs.

Supplementary Figure 4. (A) SEM image of UCNPs@V_{Zn}-ZIS; (B) is the enlargement of (A).

Supplementary Figure 5. XPS spectra of (A) Na 1s; (B) Y 3d; (C) F1s; (D) Yb 4d and (E) Er 4d of UCNPs@V_{Zn}-ZIS.

Supplementary Figure 6. XPS spectra of (A) Zn 2p; (B) S 2p and (C) In 3d of ZIS and V_{Zn} -ZIS.

Supplementary Figure 7. PL curves of ZIS and V_{Zn} -ZIS.

Supplementary Figure 8. SPV spectra of ZIS and V_{Zn} -ZIS.

Supplementary Figure 9. (A) SEM image of UCNPs@V_{Zn}-ZIS after stability test; (B) is the enlargement of (A).

Supplementary Figure 10. XRD patterns of UCNPs@V_{Zn}-ZIS before and after stability test.

Samples	Elements	Area	Area/RSF*	Zn/In [#]	V _{Zn} concentrations ^{&}
ZIS	Zn 2p	50631.00	9059.04	0.56	0
	In 3d	117387.20	16157.91		
V _{Zn} -ZIS	Zn 2p	50826.54	9094.03	0.47	16%
	In 3d	141193.20	19434.72		

Supplementary Table 1. XPS fitting data of Zn 2p and In 3d of ZIS and V_{Zn} -ZIS, and the calculated concentration of Zn vacancies

*The RSF (relative sensitivity factor) of Zn 2p and In 3d are 5.589 and 7.265, respectively^[1].

 $^{\#}Zn/In = (Area/RSF)_{Zn}/(Area/RSF)_{In}$

 $\label{eq:Vzn} \&V_{Zn} \ concentrations = (Zn/In_{(ZIS)}\text{-}Zn/In_{(VZn\text{-}ZIS)})/Zn/In_{(ZIS)}$

The concentration of Zn vacancies in $m_{(UCNPs)}:m_{(VZn-ZIS)}$ of 1:6, 1:4, 1:1, 4:1, and 6:1 are about 14%, 13%, 8%, 3%, and 2%, accordingly, when utilizing V_{Zn}-ZIS with the Zn vacancies of 16%.

Reference

 Zhang, S., Zhang, Z., Si, Y. et al. Gradient Hydrogen Migration Modulated with Self-Adapting S Vacancy in Copper-Doped ZnIn₂S₄ Nanosheet for Photocatalytic Hydrogen Evolution. *ACS Nano*, **2021**, 15, 15238-15248. DOI : 10.1021/acsnano.1c05834.