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Additional Method Details 

Model Construction and Theoretical Calculation Methods 

All calculations were performed using the DFT framework in the VASP software, 

utilizing PAW pseudopotentials. The exchange-correlation term was corrected using 

the RP functional (revised Perdew–Burke–Ernzerhof functionals). The surface slabs in 

all calculations had a minimum thickness of 8 Å in the z-direction and a minimum 

size of 7 Å in the x/y directions; the vacuum layer was 15 Å thick; the number of Cu 

atoms did not exceed 100; Cu atoms located more than 4 Å from the surface in the z-

direction were fixed. During the optimization of the Cu bulk phase structure, the cut-

off energy was 840 eV; for all other calculations, it was 400 eV. The convergence 

criteria for forces and energy were set to -0.03 eV/Å and 10-5 eV, respectively. The 

vaspkit tool package was used to generate the KPOINTS file necessary for structural 

optimization, employing the Gamma point with a K-Mesh sampling precision of 0.05; 

the Fermi level was broadened by 0.1 eV. Considering the significant impact of CO 

molecule interactions on adsorption energy calculations, all computational systems 

used the DFT-D3 dispersion correction. In this work, the coverage definition is the 

number of CO molecules per unit projected area on the xoy plane of the Slab, 

facilitating comparisons between different crystal surface adsorption configurations at 

high coverages; for comparisons within the same crystal surface, the phrase "number 

of CO molecules adsorbed on the Slab surface" is also used. 

 

The average adsorption energy of CO on the Cu surface is defined as: 

∆𝐸ads =
𝐸ads−Slab − 𝐸clean−Slab − 𝑛CO𝐸CO(g)

𝑛CO
 

where 𝐸ads−Slab、𝐸clean−Slab and 𝐸COare the energies after structural optimization, 

and 𝑛CO is the number of CO molecules adsorbed on the Slab. 

 

Method to symbolize different sites and their combinations 

We employ graph theory tools to identify and classify distinct surface sites in the 

adsorption structure. The procedure is as follows: 

 

1. Graph Representation of the Adsorption Structure: The entire adsorption structure 

is abstracted as a graph, where atoms are represented as vertices and bonds are 
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represented as edges. Specifically, the C-O covalent bond, C-Cu bonding, and Cu-Cu 

metallic bonding are abstracted as edges with graph distances of 0, 1, and 2, 

respectively. This distance definition captures the direct bonding relationships 

between the atoms. 

 

2. Extraction of Local Environment Subgraphs: For each probe C atom, a local 

environment subgraph is extracted with a graph distance of 3. This distance allows us 

to capture the second-order coordination of the surface atoms surrounding the C atom, 

which helps distinguish different site types. Including the local environment is crucial 

because atoms at the same coordination number (e.g., 3-coordinated sites on a 

Cu(111) surface) can have distinct local environments, such as the differences 

between the hcp-hollow and fcc-hollow sites. 

 

3. Isomorphism Comparison of Subgraphs: We use the is_isomorphic() function from 

the NetworkX package (based on the VF2 algorithm) to compare the isomorphism of 

the local subgraphs. This allows us to determine the distinct independent subgraphs 

and identify independent site types on the crystal surface. Using this method, we have 

identified 68 different independent site types on the 8 Cu surface configurations 

studied. 

 

4. Denotation of site types: We apply a combined letter naming scheme to distinguish 

between different site types on the surface. For example, "Bb" represents a site type 

where "B" indicates the coordination number (n=2), and "b" denotes that this is the 

second distinct graph structure of sites with the same coordination number. Similarly, 

other site types are named by following this scheme, where the first letter corresponds 

to the coordination number and the second letter differentiates the graph structure 

among sites with the same coordination number.To clarify with a specific example, 

consider the site sequence "Aa2Ab1Da1Dc2." Here, "A" represents a site with 

coordination number 1; "a" indicates that this is the first distinct graph structure of 

coordination number 1; "B" represents a site with coordination number 2; "b" 

indicates that this is the second distinct graph structure of coordination number 2, and 

so on. 
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Principle of Configuration Deduplication 

Crystal surface structures, including the distribution patterns of adsorbed atoms or 

molecules, form a two-dimensional periodic pattern described by two-dimensional 

space groups. Additionally, projections of three-dimensional crystals in certain 

directions, as well as periodic patterns on textiles or wallpaper, are considered two-

dimensional periodic patterns. There are 17 two-dimensional space groups, also 

known as crystallographic plane groups, distributed among five classes of plane 

lattices: oblique lattice points (mp): p1, p2; simple rectangular lattice points (op): pm, 

pg, cm; centered rectangular lattice points (op): p2mm, p2mg, p2gg, c2mm; square 

lattice points (tp): p4, p4mm, p4gm; hexagonal lattice points (hp): p3, p3m1, p31m, 

p6, p6mm. Three types of symmetry operations can be performed on two-dimensional 

periodic images: translation operations that describe the image's periodicity, point 

operations including pure rotations and pure mirror images, and compound 

operations, which are combinations of reflection relative to a line and translation half 

the period along that line. The plane groups corresponding to the 8 Cu surfaces 

studied in this work are shown in Table S3 and Table S4. 

 

In the limited clean Cu-Slab, generating adsorption structures by filling with CO 

ignores the actual surface periodicity, leading to many equivalent adsorption 

structures, termed filling equivalent structures. Equivalent adsorption structures can 

be identified through corresponding two-dimensional symmetry operations. In 

essence, for a given adsorption configuration, applying symmetry operations unique 

to the substrate Slab can cut out different adsorbate atom distribution patterns within 

the diamond-shaped area enclosed by the Slab lattice vectors while maintaining the 

post-transformation Slab coincident with the original Slab. Symmetry operations do 

not alter the adsorption configuration itself; hence, the configurations before and after 

transformation are equivalent. The essence of our deduplication is to determine how 

many unique symmetry operations can extract different adsorbate atom distribution 

patterns within the diamond-shaped area for a given adsorbate CO atom lattice on a 

specific surface morphology and size of the substrate Slab, based solely on the clean 

Slab's expansion multiples in the x and y directions and its independent point 

operation types. 
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For adsorption configurations generated by Slabs with lattice vectors 𝑙1⃗⃗  、𝑙2⃗⃗⃗  , and 

expansion multiples A, B, if the point group of the plane has a set of point operations 

S (including the identity operation E) containing the adsorbate lattice P (with the same 

lattice vectors as the Slab), then any operation Q on the adsorbate atoms P can be 

represented as: 

𝑄𝑃 = 𝑆𝑘𝑃 +
1

𝐴𝐵
(𝑙1⃗⃗  𝑙2⃗⃗⃗  ) (

𝐵𝑎
𝐴𝑏

), 

𝑆𝑘 ∈ 𝑆; 𝑎 ∈ [0, 𝐴 − 1], 𝑏 ∈ [0, 𝐵 − 1], 𝑎、𝑏 ∈ 𝑍 

Since the set of point operations S is finite and the values of a, b are limited, the 

number of different adsorbate lattice patterns that can be extracted within the 

diamond-shaped area is at most A × B × (number of elements in S), termed the 

characteristic transformation operation set for the Slab on the adsorbate lattice. Data 

for different surface Slabs are presented in Table S4. 

 

For a specified Cu surface (with its characteristic transformation operation set for the 

adsorbate lattice denoted as Sm), for two adsorption configurations C1 and C2 under a 

specified CO coverage: if the sets of adsorption configurations generated by applying 

all operations in Sm to both C1 and C2 are equivalent, then C1 and C2 are considered 

equivalent adsorption configurations. 

 

For example, consider two configurations, A and B, corresponding to the adsorption 

of two CO molecules on the Cu(111)-Slab. The origin O of the slab unit cell is 

associated with both A and B, and 𝑙1⃗⃗   and 𝑙2⃗⃗⃗   are the lattice vectors of the Cu(111) 

slab. In the POSCAR files for configurations A and B, the CO coordinates do not 

match exactly, meaning they would be initially considered different configurations. In 

other words, the CO molecules are placed in different regions within the quadrilateral 

formed by the lattice vectors. However, this arrangement does not take into account 

the periodicity and symmetry of the slab surface. 

 

By fixing the lattice vectors, we can apply symmetry operations to transform 

configuration A into configuration B. Specifically, we can perform two operations: 

 

1. A 120° clockwise rotation of A around a fixed axis O’. 
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2. A mirror reflection of A through a plane passing through point O, producing A', 

followed by a translation of A' along the vector 𝑙′⃗⃗ = (
1

3
𝑙1⃗⃗  +

2

3
𝑙1⃗⃗  ), resulting in B. 

3.  

 

Supplementary Figure 1. Symmetry operations for transformation between 

configurations A and B. 

 

These transformations can be written as: 

𝑄𝑃 = 𝑅𝑃 = 𝑇𝑀𝑃 = 𝑀𝑃 + (
1

3
𝑙1⃗⃗  +

2

3
𝑙1⃗⃗  ) 

where Q represents the combined operator, P represents the atomic coordinates of the 

adsorption configuration (usually in fractional coordinates), R represents the 

clockwise 120° rotation, M represents the mirror operation through point O, and T 

represents the translation operation. 

 

This means that if there is a symmetry operation Q that transforms A into B, then A 

and B are equivalent configurations, or duplicate configurations. Furthermore, the 

transformation Q is not unique. We can prove that if configuration A is equivalent to 

configuration B, the corresponding transformation operations are finite and only 

depend on the inherent symmetry of the slab and the supercell expansion factors. 

For example, with a Cu(111) slab expanded by a factor of 3 in both directions, the 

total number of equivalent adsorption configurations generated by symmetry 

operations is finite and can be expressed as: 

𝑄𝑃 = 𝑆𝑘𝑃 +
1

𝐴𝐵
(𝑙1⃗⃗  𝑙2⃗⃗⃗  ) (

𝐵𝑎
𝐴𝑏

), 
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𝑆𝑘 ∈ 𝑆; 𝑎 ∈ [0, 𝐴 − 1], 𝑏 ∈ [0, 𝐵 − 1], 𝑎、𝑏 ∈ 𝑍 

where 𝑆𝑘 represents the set of symmetry operations associated with the slab (e.g., 

identity operation E, rotations R1, R2, and mirror operations M1, M2 and M3 for 

Cu(111)), A and B are the supercell expansion factors (both equal to 3 in this case). 

The total number of equivalent configurations is A×B×number of symmetry 

operations, yielding a maximum of 54 equivalent configurations for each adsorption 

configuration. 

 

In the algorithm, we generate all equivalent configurations of a given adsorption 

structure A and quickly check whether another configuration B is equivalent. The use 

of matrix methods allows this process to be done efficiently. 

 

Definition of Average Minimum C-C Distance 

For a given coverage, we define the set of configurations with predicted average 

adsorption energy less than the lowest adsorption energy + 0.01 eV as the most stable 

adsorption configuration set at that coverage, using the optimized force field to 

optimize this set. The average minimum C-C distance (MMCD) at this coverage is 

defined as:  

MMCD =
1

𝑁𝑛𝐶𝑂
∑∑𝑀𝐶𝐷𝑖

𝑛𝐶𝑂

𝑖=1

𝑁

𝑗=1

 

where 𝑀𝐶𝐷𝑖 represents the distance between the C atom in the i-th CO and its 

nearest neighboring C atom, and N is the number of configurations in the most stable 

adsorption configuration set. 

 

Evaluate the computational overhead of different methods 

The time comparison results in Figure 4 were obtained using a CPU cluster provided 

by Baode Technology Group. Each CPU node in the cluster consists of two CPUs, 

with models including the Intel® Xeon® CPU E5-2650 v3 and Intel® Xeon® 

Platinum 9242. The former has 10 cores per CPU, while the latter has 48 cores per 

CPU. 

 

To obtain 1592 DFT data points, continuous calculations on a 20-core node took 94 

days. In contrast, using the trained deep learning force field to perform geometry 
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optimization on 186,764 structures on a 96-core node took 66 days. The training of 

the deep learning potential itself took 20 hours on a 96-core node. Training and 

inference of the graph neural network were performed on a single GPU, and the 

computational cost was relatively negligible. 

 

Hence, the computational costs for the three strategies are roughly as follows: 

DFT: 94×24×20×6957456/1592 = 197,186,190 (CPU hours) 

DFT+MLFF: 94×24×20 + 20×96 + 66×24×96×(6957456-1592)/186764 = 5,710,532 

(CPU hours) 

 

DFT+MLFF+GNN: 94×24×20 + 20×96 + 66×24×96 = 199,104 (CPU hours) 

 

From these calculations, it is clear that the computational cost of the 

DFT+MLFF+GNN approach is approximately 1/1000 of that of full DFT 

calculations. It is important to note that this comparison is made for predicting a large 

number of different adsorption configurations (around 7 million), rather than 

accelerating the simulation of dynamics for a single configuration. This represents a 

significant improvement in prediction efficiency. 
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Supplementary Figure 2. Model architecture of GNN. 

 

 

Supplementary Figure 3. Model performance on DFT+MLFF optimized configurations. (A-C) 

corresponding to training set, validation set and test set, respectively. 
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Supplementary Figure 4. Comparison of model performance trained with different feature 

extraction methods. (A), (C), and (E) corresponding to the training, validation, and testing results 

of models without considering non-bonded interactions; (B), (D), and (F) corresponding to the 

training, validation, and testing results of models considering non-bonded interactions. 
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Supplementary Figure 5. Line graph showing the variation of the average coordination number 

of Cu atoms occupied by CO as a function of CO coverage. The dashed line represents the average 

coordination number of Cu atoms on the corresponding clean surface. 
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Supplementary Table 1. Configurations counting before deduplication 

Number of COs 

on the slab 

100 110 111 210 221 310 311 322 

1 36 48 54 68 72 76 48 84 

2 486 762 972 1662 1785 2242 870 2778 

3 3108 4792 7083 17980 19122 33024 7528 46768 

4 9837 11667 20196 87717 91155 264209 32463 434217 

5 14940 9108 19044 176724 177996 1178728 67212 2264544 

6 10596 2212 4824 165816 114869 2936752 62753 6541261 

7 3420 24 432 74512 21039 4008556 21564 10090668 

8 486 3 54 14256 2430 2848410 4464 7890852 

9 28 0 6  317 953856 850 2903258 

10      145920 96 492171 

11      9728 12 53535 

12      256 0 3846 

13        159 

14        15 
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Supplementary Table 2. Configurations counting after deduplication 

Number 

of COs 

on the 

slab 

100 110 111 210 221 310 311 322 

1 3 6 4 17 19 14 8 23 

2 17 61 29 441 339 339 149 537 

3 75 279 170 4495 3347 4276 1260 8182 

4 199 642 442 22133 15557 33663 5436 73710 

5 292 481 424 44181 30206 148017 11202 380847 

6 230 165 145 41711 19678 368910 10518 1096669 

7 90 3 23 18628 3704 501985 3594 1690397 

8 22 1 4 3657 452 357710 749 1323291 

9 7  4  73 119580 149 489281 

10      18575 17 84197 

11      1240 2 9550 

12      46  833 

13        39 

14        5 

 

 

 

Supplementary Table 3. Plane groups and plane point groups corresponding to different 

Miller indices 

Cu 

facet 

Plane 

group 

Plane  

point group 

Number of point 

operations  

Slab  

expansion factor 

 (A,B) 

Slab top view 

100 p4mm 4mm 8 (3, 3) 

 

110 p2mm 2mm 4 (2, 3) 

 

111 p3m1 3m 6 (3, 3) 
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210 p1 1 1 (2, 2) 

 

221 p1m1 m 2 (3, 1) 

 

310 p1m1 m 2 (2, 2) 

 

311 p1 1 1 (2, 3) 

 

322 p1m1 m 2 (1, 3) 
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Supplementary Table 4. Symmetrical pattern of Plane group 

Plane group Symmetrical pattern 

p3m1 

 

p1 

 

p4mm 

 

p2mm 

 

p1m1 
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Supplementary Table 5. The number of configurations which were calculated by DFT 

calculation for training MLFF 

Number 

of COs 

on the 

slab        

100 110 111 210 221 310 311 322 

1 3 5 4 5 5 5 4 4 

2 5 13 6 15 15 15 10 10 

3 15 56 34 25 25 25 14 14 

4 40 129 89 30 27 30 15 14 

5 59 97 85 22 28 28 15 14 

6 46 33 29 22 28 28 15 14 

7 18 3 5 14 24 28 7 14 

8 5 1 4 14 16 28 6 14 

9 5  4  12 10 6 14 

10      10 3 14 

11      8 1 14 

12      4  14 

13        2 

14        1 

 

 

 

Supplementary Table 6. Configurations for training the adsorption energy prediction model 

of GNN 

Number 

of COs 

on the 

slab 

100 110 111 210 221 310 311 322 

1 3 6 4 12 16 14 7 15 

2 17 61 29 78 136 105 28 120 

3 75 279 170 364 695 560 84 606 

4 199 642 442 1154 2307 2166 210 2159 

5 292 481 424 1583 4835 5202 442 5867 

6 230 165 145 1567 4748 8997 518 12943 

7 90 3 23 752 1295 11334 280 23630 

8 22 1 4 259 165 9743 103 32206 
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9 7  4  49 4496 40 26416 

10      1140 7 10626 

11      175 2 2250 

12      15  399 

13        22 

14        4 
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In the machine learning force field section, we used the DPMD deep learning 

potential framework. Ensuring consistency in crystal facet and coverage, all 

trajectories of adsorption configurations optimized by DFT were thoroughly mixed, 

from which training and validation sets were divided in a 4:1 ratio.  

Supplementary Table 7. MLFF training parameters 

Item Content Value 

Descriptor “type” “se_e2_a” 

“sel” “auto” 

“rcut_smth” 0.5 

“rcut” 10 

“neuron” [25, 50, 100] 

"resnet_dt" False 

"axis_neuron" 16 

Fitting net “neuron” [240, 240, 240] 

"resnet_dt" True 

Learning rate "type" "exp" 

"decay_steps" 2500 

"start_lr" 0.001 

"stop_lr" 3.51e-08 

Loss "type" "ener" 

“start_pref_e” 0.02 

“limit_pref_e” 1 

“start_pref_f” 1000 

“limit_pref_f” 1 

“start_pref_v” 0 

“limit_pref_v” 0 

Training  "batch_size" 20 

“numb_btch” 6 

“numb_steps” 500000 

 

In the adsorption energy prediction model section, we employed a graph embedding 

network model based on the local environment of the adsorbate, a technique for 

feature engineering on graph-structured data, consisting of embedding layers, 

convolutional layers, and pooling layers, with the final output mapped to label data 

through hidden layers. During the dataset preparation phase: the dataset was divided 

into training, validation, and test sets in a 3:1:1 ratio; feature selection included 
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elemental features and structural features, with elemental features covering 

electronegativity, atomic radius, valence electron number, first ionization energy, etc., 

and structural features including bond types and bond lengths. These features were 

processed through one-hot encoding to obtain initial node feature vectors and edge 

feature vectors. 

 

 

Supplementary Table 8. Attributes selection 

Attribute Range Interval 

Pauling electronegativity 0.5-4.0 10 

Atom radius (pm) 25-250 10 

Valence electrons 1-12 12 

First ionization energy (eV) 1.3-3.3 10 

Bond length (Angstrom) 0.5-4.5 10 

Bond type 0,1,2,3  

 

 

Supplementary Table 9. Training parameters 

Hyperparameters Content 

optimizer Adam 

momentum 0.9 

weight_decay 0 

log_learning_rate -7 

lr_milestones [100,] 

batch_size 128 

epochs 200 

dropout 0.1 

 


