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Abstract

Cancers are heterogeneous at the cellular level. Cancer stem cells/tumor initiating cells (CSC/TIC) both initiate 
tumorigenesis and are responsible for therapeutic resistance and disease relapse. Elimination of CSC/TIC should 
therefore be able to reverse therapy resistance. In principle, this could be accomplished by either targeting cancer 
stem cell surface markers or “stemness” pathways. Although the successful therapeutic elimination of “cancer 
stemness” is a critical goal, it is complex in that it should be achieved without depletion of or increases in somatic 
mutations in normal tissue stem cell populations. In this perspective, we will discuss the prospects for this goal 
via pharmacologically targeting differential Kat3 coactivator/Catenin usage, a fundamental transcriptional control 
mechanism in stem cell biology. 
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INTRODUCTION
Cancer is a major contributor to worldwide mortality[1]. There are minimally four broad resistance-inducing 
strategies that are employed by cancer cells including: (1) direct target reactivation; (2) activation of signals 
upstream or downstream of oncogenes; (3) engagement of parallel oncogenic pathways; and (4) adaptive 
survival mechanisms. Despite tremendous advances in targeted therapeutics and personalized medicine, 
which have significantly increased progression free survival, maximum clinical success as defined by 



overall survival or “cures”, remain limited due to therapeutic resistance[2]. These resistance mechanisms 
can be attributed to a subpopulation of self-renewing, highly tumorigenic, drug-resistant cancer stem cell/
tumor initiating cell (CSC/TIC), in which therapeutic pressure leads to the selection of therapy resistant 
clone[3-8]. 

Stem cells and cancer stem cells 
All stem cells by definition, have the capacity to both self-renew (i.e., make at least one identical copy of 
itself at each division) as well as to differentiate into more mature, albeit less potent, specialized cells. The 
concept of CSC is not new. Cohnheim, more than 150 years ago, proposed that cancer might arise from 
rare cells with stem cell-like properties[9]. The existence of CSC has now been demonstrated in many 
tumor types including leukemia, brain, breast, bladder, prostate, colon, etc., where their presence has 
been associated with disease recurrence, multidrug resistance and metastasis[10]. Therefore a critical goal 
to change the course of cancer therapy is to develop strategies to safely eliminate CSC without deleterious 
effects to normal spermatogonial stem cell (SSC) populations. 

Two mechanisms are proposed to account for the generation of CSC. In the stochastic model, cancer cell 
plasticity endows non-CSC with the ability to dedifferentiate into CSC. Alternatively, in the hierarchical 
model, CSC are able to self-renew thereby expanding the CSC pool from which escape mutants can 
be selected. CSC and SSC share multiple characteristics, including self-renewal and the potential to 
differentiate. As previously pointed out, the term “cancer stem cell” does not have to refer to the cell of 
origin[11]. Rather the term CSC refers to cells that have “stem-like” properties. CSC can originate from 
tissue stem cells, transiently amplifying cells or potentially even differentiated cells[12]. SSC, due to their 
longevity and self-renewing properties, have a far greater propensity to accumulate carcinogenic mutations, 
which could markedly inf luence the behavior of those cells, e.g., accelerate self-renewal via a switch 
from asymmetric to symmetric division, which will be further discussed[13,14]. It is also possible that the 
initial mutations occur in SSC, yet the final mutations that confer oncogenesis occur during neoplastic 
transformation in downstream progeny that have blocks in terminal differentiation[15]. Further, interaction 
with the environment or signaling changes within a cell can lead to epigenetic or phenotypic state changes 
relevant to CSC generation[16]. Regardless of the exact origin of CSC, therapeutic resistance in CSC has 
been associated with (1) quiescence, as most conventional cytotoxic agents target proliferating cell[17,18]; (2) 
high expression of drug-efflux pumps, e.g., ATP binding cassette (ABC) family transporters[19]; (3) increased 
DNA repair and detoxifying enzymes[20]; (4) acquisition of an EMT-like phenotype[21]; and (5) utilization of 
hypoxic niche microenvironments that provide survival fostering signals[22]. 

Targeting CSC could in principle be accomplished via the targeting of CSC specific cell surface markers 
or through alternatively “stemness” pathways. Although the successful therapeutic elimination of “cancer 
stemness” offers enormous promise, it will require significant precision to avoid deleterious effects (e.g., 
depletion of, or increases in, somatic mutations) in normal SSC populations. Unfortunately in this regard, 
the similarities between normal adult SSC and CSC far outweigh their differences[23]. CSC express similar 
“stemness” markers and exhibit similar cellular behaviors to SSC as described above. SSC in tissues 
preferentially inhabit specialized hypoxic niches and are critical for both normal tissue homeostasis and 
regeneration after injury[24-26]. Long-lived SSC are quiescent and rarely become activated under homeostatic 
conditions, however upon injury to repair damaged tissue, they enter the cell cycle. CSC occupy the 
same hypoxic niches, thereby competing with normal SSC for this limited environment. The same signal 
transduction pathways utilized in SSC maintenance, proliferation and differentiation (i.e., Wnt, Notch, 
Hedeghog, TGFβ/BMP, JAK/Stat, Hippo, FGF/MAPK/PI3K) also regulate CSC[27-29]. For both CSC and 
SSC, there are multiple points of intersection and crosstalk, including feedback and feed forward loops, 
connecting the various signaling cascades that modulate “stemness” allowing for escape from driver 
directed therapeutics. These targets and therapies blocking these pathways are summarized in recent 
reviews[8,30-32]. 
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Adult SSC are present in limited numbers. They are believed to be essentially immortal and remain with 
us for our entire lives. The “dark side” of the immortality of SSC is their capacity to be corrupted into 
CSC. Like their normal counterpart SSC, CSC exhibit self-renewal capacity and differentiation potential, 
albeit with aberrant and incomplete differentiation, thereby having the capacity to maintain or renew and 
propagate a tumor. Under normal homeostatic conditions, long-term SSC divide relatively infrequently, 
perhaps only once every few months[33] or even less[34]. Quiescent SSC, once they enter the cell cycle, can 
undergo mitosis to give rise to two daughter cells. Mitotic stem cells can divide either symmetrically or 
asymmetrically [Figure 1]. Ideally, an asymmetric balance is maintained, whereby one of the daughter cells 
remains in its niche as a stem cell and the other daughter proceeds forward to amplify and subsequently 
differentiate. However, stem cells (both SSC and CSC) can also undergo symmetric divisions. There are 
two modes of symmetric division: (1) symmetric non-differentiative divisions, where both daughter cells 
remain as stem cells in their niche; or (2) symmetric differentiative divisions, where both cells go on to 
differentiate [Figure 1]. Symmetric division in our essentially “immortal” SSCs, are considered deleterious, 
leading either to premature exhaustion of the stem cell pool or alternatively increasing the number of DNA 
lesions accumulated in SSC (via symmetric differentiative and non-differentiative divisions respectively). 
The preference for long-lived SSC to undergo asymmetric divisions is outlined in the Cairn’s “immortal 
strand hypothesis”[35], which postulated that the stem cell desires to retain its original uncopied strands 
of DNA and to pass on the duplicated strands that contain multiple copy errors, inherent in the DNA 
replication process, to its differentiated daughter cell, thereby minimizing the total number of DNA 
mutations that accumulate in the long-lived SSC population. In order to make the decision to divide 
symmetrically versus asymmetrically, a stem cell undergoing mitosis must read an enormous array of 
information from its environment (e.g., oxygen levels, nutrient levels, circadian cycles, growth factors, 
adhesion molecules, kinase cascades, cell–cell contacts, etc.). How is all of this information integrated 
to decide a stem cell’s fate, i.e., to exit quiescence and subsequently divide either asymmetrically or 
symmetrically, be it a normal SSC or a CSC? 

Interestingly, a preference for symmetric over asymmetric divisions appears to be one of the fundamental 
differences between CSC and SSC. Breast cancer stem cells with p53 mutations preferentially undergo 
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Figure 1. Stem cell divisions. An asymmetric division results in the production of two daughter cells with different cell fates-one a stem 
cell and the other a diafferentiated daughter cell. There are two modes of symmetric divisions: symmetric non-differentiative divisions 
generate two daughter cells that remain as stem cells, whereas symmetric differentiative division gives rise to two daughter cells, both of 
which are differentiated daughter cells



symmetric divisions[36]. Loss of the tumor suppressor PTEN leads to premature exhaustion of the normal 
hematopoietic stem cell population, presumably via increased symmetric differentiative divisions and 
expansion of the leukemic stem cell population via increased non-differentiative symmetric divisions[37]. 
Indirect perturbation of Notch signaling, via genetic activation of the Hedgehog pathway, also causes an 
increase in neural stem cell symmetric divisions[38]. Symmetric differentiative divisions by “corrupted” 
SSC prior to the accumulation of additional deleterious mutations generates bona fide CSCand can 
stochastically eliminate this SSC population. This mechanism prevents non-differentiative symmetric 
divisions expanding the “pre-CSC” pool. An example of this expansion of the “pre-CSC” pool is 
represented by clonal hematopoiesis of indeterminate potential (CHIP). CHIP is defined by the presence of 
somatic hematologic-cancer-associated gene mutations and can be seen in the peripheral blood of at least 
10% of people older than 60 years of age without any history of hematologic disorders[39]. The presence of 
CHIP is associated with an increased risk of hematologic cancers and an increased overall mortality[40].

Wnt/Catenin-dependent transcription and “stemness”
Wnt signaling is an ancient and highly evolutionarily conserved pathway that is important throughout 
embryonic development and the life of an organism. It is a very complex signaling cascade[41] that initiates 
a broad range of intracellular responses broadly classified as either canonical (involving nuclear β-catenin 
mediated transcription) or non-canonical (planar cell polarity, Ca2+/PKC activation)[42,43]. Canonical Wnt 
signaling is generally associated with proliferation and lack of differentiation (for example in cancer), 
whereas the non-canonical pathway regulates cellular patterning and tissue organization. β-catenin is 
critical in both pathways via its roles either in the nucleus or cytoskeleton and cytoplasmic membrane, 
respectively. Although designating Wnt signaling as either canonical or non-canonical allows for simplified 
conceptual discourse, there is great crosstalk between the two responses, and Wnt crosstalk regulates 
complex nonlinear networks in development and homeostasis[44]. Nuclear β-catenin, although additional 
catenins, including γ-catenin/plakoglobin, may additionally participate under particular circumstances[45], 
in transcription is controlled by the so-termed “canonical Wnt” or “Wnt/β-catenin” signaling cascade. 
Nuclear translocation of β-catenin and its subsequent transcriptional activity can also be induced by non-
Wnt signaling. Epithelial to mesenchymal transition, leads to β-catenin nuclear translocation[46], perhaps 
through down-regulation of β-catenin’s cytoplasmic binding partner E-cadherin[47]. Receptor tyrosine 
kinases[48] and non-receptor tyrosine kinases including Src[49] and Abl[50] can enhance β-catenin-mediated 
transcription by disrupting the E-cadherin/β-catenin interaction. Prostaglandins[51], hypoxia[52,53], high 
glucose levels[54], and cholinergic innervation[55] additionally may activate Wnt/β-catenin signaling. A wide 
range of inputs an influence β-catenin dynamics and β-catenin-dependent transcription[56-58]. Balancing 
self-renewal versus differentiation in SSC, requires signaling from a number of other pathways (e.g., Notch, 
Hedgehog, JAK/Stat, BMP, Hippo, FGF/MAPK) that must be integrated with nuclear β-catenin signaling 
[Figure 2]. Wnt signaling is critical in stem cell biology and development[59]. However, there is no consensus 
on whether Wnt signaling is important for either maintenance of potency[3,60] or the differentiation of stem 
cells[61]. Wnt/catenin signaling clearly plays dichotomous roles in SSC biology[62]. 

Wnt/Catenin signaling in cancer stem cells and cancer
Wnt signaling plays a critical role in SSC homeostasis[63]. Not surprisingly, aberrant regulation of Wnt 
signaling is a recurrent theme in cancer biology[64,65] and has been implicated in the tumorigenic potential 
of stem cells. 

Continued expression of BIRC5/Survivin, a Wnt target gene, in hES cells is essential for teratoma 
formation[66]. Wnt/β-catenin regulation of telomerase activity endows stem cells and cancer stem cells with 
unlimited self-renewal capacity[67]. Slug, a strong inducer of EMT in tumors, is associated with nuclear 
accumulation of transcriptionally active β-catenin[68]. Over-expression of either of the putative Wnt target 
gene EMT inducing factors twist and snail increases the expression of CSC markers[69]. The connection 
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between enhanced nuclear β-catenin signaling and EMT is strengthened further by the significant 
number of β-catenin target genes (e.g., S100A4, fibronectin, L1CAM, CD44, MMP7, uPAR, etc.) associated 
with invasion, migration and metastases[70]. Wnt signaling in CSC is associated with metastasis[71], and 
the regulation of organ specific tropism of CSC during metastasis[72], as well as in the formation of the 
pre-metastatic niche that nurtures metastasizing CSC[73]. Cdx-1[74] and Id2[75], two transcription factors 
associated with the maintenance of a stem like” state, have been shown to be β-catenin regulated. Many 
cell surface markers in stem cell and cancer stem cells are direct Wnt targets, including LGR5/GPR49[76], 
CD44[77], CD24[78], CD133[79], ABC cassette genes[80,81] and EpCAM[82]. The first identified CSC in solid 
tumors had a CD44high CD24low phenotype and comprised a population of breast cancer CSC possessing 
tumor-initiating capacity[83]. These genes and related references are listed in Table 1. Many Wnt signaling 
related genes are up-regulated in hematopoietic malignancies[84,85] and epigenetic silencing of negative 
regulators of the Wnt signaling cascade is frequently associated with leukemia[86]. Moreover, aberrant 
activation of tumor associated Wnt/β-catenin signaling has been correlated with resistance to radiation, 
cytotoxic and targeted chemotherapy[87,88] and most recently checkpoint immunotherapy resistance in 
multiple tumor types including, melanoma, bladder and head and neck cancers[89]. Tumor-intrinsic Wnt/
β-catenin signaling mediates cancer immune evasion by preventing T-cell and/or dendritic cell infiltration, 
migration and function, and thereby resistance to immune checkpoint inhibitors[90,91] and has been shown 
to maintain T-cells in a differentiated exhausted dysfunctional state[92].

Targeting Wnt/Catenin signaling in SSC and CSC
Successful pharmacologic manipulation of aberrant catenin-regulated transcription of endogenous 
“stemness” in SSC and CSC holds enormous potential. However, significant concerns arise in regards to 
potential deleterious effects on normal SSC populations, including increasing DNA lesions or elimination 
of normal SSC while attempting to eliminate CSC or activate quiescent or senescent SSC[23,41,93]. It may 
seem obvious to target the Wnt signaling pathway in both SSC and CSC and indeed this has engendered 
substantial efforts to develop therapeutic agents. Despite these efforts, no therapeutic agents to date 
specifically targeting the Wnt pathway have been approved for use in patients. A number of factors have 
thwarted progress in this regard. First, the Wnt signaling cascade is highly complex[41,42]. For example, in 
addition to classical canonical Wnt/β‑catenin/TCF transcription, Wnt proteins elicit a variety of alternative 

Figure 2. Coordination and integration of multiple signaling cascades is required to regulate the decision of a stem cell to either 
differentiate or self-renew. Multiple signaling inputs both intrinsic and extrinsic, including nutrient and oxygen levels, growth factors and 
various signaling cascades must be integrated and funneled down to regulate a transcriptional program either leading to self-renewal or 
the initiation of differentiation
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non-canonical responses[94,95]. Secondly, crosstalk from various non-Wnt factors can also modulate 
nuclear β‑catenin accumulation as previously discussed. Overall, the ability to target Wnt signaling holds 
enormous potential; however, like the sword of Damocles, it brings substantial risks and concerns as it is 
also a crucial pathway in normal SSC maintenance and tissue homeostasis. 

Differentiation therapy
All-trans retinoic acid provided a breakthrough differentiation therapy for acute promyelocytic leukemia. 
However, broad scale success with differentiation therapy has not been achieved to date[96]. As stated 
previously, a preference for symmetric over asymmetric divisions appears to be one of the fundamental 
differences between CSC and SSC. The question then is: can we safely manipulate endogenous stem 
cell populations by taking advantage of their preferred modes of division to differentiate away the CSC 
population without eliminating normal SSCs? 

In order to form a transcriptionally active complex, β-catenin must recruit one of the two Kat3 
transcriptional coactivators, Kat3A, cAMP response element binding protein [CREB-binding protein (CBP)] 
or its closely related homolog Kat3B, p300 (E1A-binding protein, 300 KDa)[43,97] to promoters and enhancers. 
Kat3 coactivators, by binding to hundreds of proteins, play critical roles as master regulators of transcription. 
Kat3 activation has been previously reviewed by our team[23,41], and is driven by multiple signals including 
Wnts, high glucose, hypoxia, and EMT inducers. Historically, CBP and p300 have been considered largely 
redundant due to their significant protein sequence identity and even higher similarity. However, CBP and 
p300 are clearly not redundant and carry out definitive and unique roles both in vitro and in vivo[23,98-101]. 
From a library of 5000 secondary structure mimetics, we identified ICG-001 (IC50 = 3 μM) in a Wnt reporter 
screen in colon cancer cells. We subsequently identified and validated that the molecular target of ICG-001 
was CBP and that ICG-001 binds specifically and with high affinity (~1 nM) to the N-terminus of CBP but 
not to p300[102,103]. We subsequently found that selectively blocking the CBP/catenin interaction with ICG-
001, with an increase in p300/catenin-mediated transcription leads to the initiation of differentiation in stem 
and progenitor cells including ES, iPS, SSC and CSC [Figure 3A][104-108]. These investigations allowed us to 
propose our model of differential coactivator usage. The critical non-redundant roles that CBP and p300 
play in catenin-mediated transcription are highlighted in our model [109] [Figure 3B]. The model posits that 
catenin’s choice to utilize either CBP or p300 is the first decision that guides a stem cell to either maintain 

Genes References
Stemness related  
  Survivin/BIRC5 [58]
  htert [59]
  Cdx1 [66]
  Id2 [67]
  LGR5/GPR49 [68]
  CD44 [69]
  CD24 [70]
  CD133   [71]
  ABC cassette genes [72,73]
  EpCAM [74]
EMT related  
  Slug [60]
  S100A4 [62]
  Fibronectin [62]
  L1CAM [62]
  CD44 [62]
  MMP7 [62]
  uPAR [62]

Table 1: Wnt Target Genes Associated with “Stemness”
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potency or initiate a differentiative transcriptional program, respectively [Figure 3B]. We subsequently 
identified several small molecules, IQ-1 and ID-8, which are indirect p300/catenin inhibitors as well as the 
specific direct p300/catenin antagonists YH249/250. P300/catenin antagonists maintain the potency (pluri- 
or multipotency) of both mouse and human embryonic, induced pluripotent and somatic stem cells, by 
increasing CBP/catenin driven symmetric divisions both in vitro and in vivo[107,109-112] [Figure 3C].

We have extensively examined the therapeutic potential of selectively antagonizing the CBP/catenin 
interaction, and have demonstrated the ability to safely eliminate drug-resistant CSC, via forced 
differentiation, without deleterious effects on the normal endogenous stem cell populations[104,105,113-115]. 
CBP/catenin antagonists can activate SSC and induce asymmetric differentiation thereby enhancing 
repair pathways in preclinical models of pulmonary and renal fibrosis[116,117], myocardial infarction[118] 
and neurodegeneration[23,108,119]. The differential effects of CBP/catenin antagonists on CSC versus SSC, 
specifically forced differentiation and elimination versus differentiation and enhanced repair without 
depletion, are cell intrinsic. CBP/catenin antagonists utilize the intrinsic propensity of CSC to preferentially 
divide symmetrically[36,37] thereby stochastically eliminating CSC via forced symmetric divisions [Figure 4A]. 

A

Figure 3. Differential Kat3 coactivator usage. A: ICG-001 specifically disrupts the interaction between CBP and β-catenin. This leads to 
increased p300/β-catenin transcription, a loss of the capacity to self-renew and the initiation of differentiation; B: β-catenin differential 
coactivator usage regulates differentiation versus self-renewal. β-catenin usage of either CBP or p300 leads to transcriptional activation 
of genes that are critical for self-renewal or differentiation respectively; C: IQ-1, ID8 (indirectly), and YH 249/250 (directly) disrupt the 
p300/β-catenin interaction. Selectively antagonizing the p300/β-catenin interaction enhances CBP/β-catenin transcription thereby 
favoring self-renewal

B

C
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SSC preferentially differentiate asymmetrically, with one daughter cell always remaining in the niche and 
therefore are not depleted [Figure 4A][50]. Asymmetric differentiation can be activated by CBP/catenin 
antagonists thereby enhancing repair without damaging the normal SSC population[23]. Therefore, CSC 
when treated with CBP/catenin antagonists will stochastically be cleared from their niche via symmetric 
differentiative divisions [Figure 4B]. 

Significant concerns about specificity arise when targeting the coactivator protein CBP, as it has as many 
as 500 molecular partners, including a vast array of transcription factors[119]. It is important to note 
that neither pre-clinical nor clinical studies have shown toxicity when utilizing specific small molecule 
CBP/catenin antagonists are safe. PRI-724 (IC50 ~150 nM), a second-generation clinical CBP/catenin 
antagonist demonstrated an excellent safety profile in preclinical IND enabling toxicology studies. The 
no-adverse-event-level for PRI-724 in dogs was 120 mg/kg/day administered for 28-day via continuous 
infusion[120]. Clinically, PRI-724 had an excellent safety profile, demonstrating no dose limiting toxicities 
with escalation from 40 to 1280 mg/m2/day administered by continuous i.v. infusion. Down regulation of 
the biomarker survivin/BIRC5 with upregulation of the differentiation antigen CK20 in EpCAM selected 
circulating tumor cells strongly correlated with increasing plasma concentrations of drug[120]. PRI-724 also 
demonstrated safety and efficacy with increased liver function in a trial conducted in patients with HCV-
induced hepatic fibrosis[121].This degree of safety was initially surprising. We believe this is due to the high 

Figure 4. Intrinsic differences in the mode of division of SSC and CSC allow for the safe elimination of CSC via symmetric differentiative 
divisions. A: Asymmetric division is preferred in normal somatic stem cells (SSCs). Both symmetric and asymmetric divisions occur 
in cancer stem cells (CSC), thereby leading to an increase in the CSC population; B: CBP/catenin antagonists (e.g., ICG- 001) force 
symmetric differentiative divisions in CSC thereby driving the CSC population out of their niche. CBP/catenin antagonists maintain SSC 
asymmetric divisions thereby never depleting the niche

A

B
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biochemical specificity of ICG-001/PRI-724 for binding to CBP, and its limited impact on only a fraction of 
all CBP interactions. The unique non-redundant roles that the N-termini of the two Kat3 coactivators CBP 
and p300 play in stem cell biology and the intrinsic preference for asymmetric division in normal SSC are 
critical to the safety of these agents.

Kat3A/CBP and Kat3B/p300 and SSC Metabolism
“Nothing in Biology Makes Sense Except in the Light of Evolution” - Theodosius Dobzhansky.

Quiescence provides safeguards the functionality of SSC by restricting the damage caused by mitochondrial 
respiration and reactive oxygen species generated during oxidative phosphorylation. These safeguards 
limit DNA mutations and prevent uncontrolled cell cycle entry[122,123]. SSC and CSC preferentially utilize 
glycolysis over oxidative phosphorylation despite the inefficiency in regards to ATP generation of 
glycolysis compared to oxidative phosphorylation[124]. The activation of quiescent SSC and the initiation of 
differentiation involves a metabolic change from glycolysis and entry into the Krebs cycle. Reprogramming 
to pluripotency, on the other hand is associated with “anaerobicizing”[125]. With the dawn of the evolution 
of vertebrates, roughly 450 million years ago, a new lifestyle having a relatively long-lived adult stage began. 
To accommodate this successfully a mechanism for long term homeostatic maintenance and tissue repair 
was essential. This was accomplished via quiescent “immortal” SSC maintaining an “anaerobic” metabolic 
state in specialized niches as opposed to their more proliferative aerobic-differentiated daughter cells. This 
mechanism evolved in order to protect genetic material integrity in long lived vertebrates[126]. Maintaining 
the two different populations resulting from asymmetric division; one daughter being a long-lived 
quiescent SSC utilizing anaerobic metabolism and the other a rapidly expanding differentiating population 
utilizing aerobic metabolism, required tight regulation. The Kat3 coactivator family CBP and p300 diverged 
via gene duplication just prior to the vertebrate radiation over 450 million years ago[127]. CBP and p300 are 
extremely large proteins encoded over 33 and 31 exons respectively. CBP and p300 retain extremely high 
identity, up to 93%, particularly over a large central core that includes the CH1, KIX, Bromodomain, and 
CH2 and CH3 regions [Figure 5], despite diverging over 450 million years ago[128,129].

The small molecules CBP/catenin antagonists, ICG-001/PRI-724, and p300/catenin antagonists, YH 
249/250, bind the CBP and p300 N-termini, respectively[23,102,111,130]. This least conserved region between 
the two coactivators, which has only 66% identity, binds both β-catenin and through a highly conserved 
LXXLL sequence, nuclear receptor family members[131]. The N-termini within each orthologous coactivator 
are extremely conserved with human and mouse CBP being 98% identical at the amino acid level within 
this region. The nuclear receptor family and Wnt signaling appeared significantly earlier in evolution 
approximately 600 million years ago in the first multicellular animals (metazoans)[132,133] and are found in 
nematodes, flies, and vertebrates. 

Previously, we proposed that gene duplication generated the two Kat3 coactivators and a subsequent rapid 
divergence within their N-terminal regions occurred at the same time as the integration of Wnt and nuclear 

Figure 5. Despite having diverged more than 450 million years ago, CBP and p300 possess a very high percentage of identity and even 
higher homology at the amino acid level. The most divergent region by far is the very amino termini of CBP and p300 to which ICG-001/
PRI-724 and YH249/250 bind respectively
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receptor family signaling[23]. This co-evolution resulted in high fidelity control over the differential cell fates 
generated by asymmetric stem cell division, thereby enabling two inherently different cell populations and 
providing the expanding daughter cell population integrated pathways to generate divergent cell types. This 
joint genetic divergence and signaling integration additionally provided a mechanism to “read” multiple 
signals affecting SSC quiescence and DNA integrity. For example, a huge number of lesions in DNA can 
be induced by ultraviolet light[134].Therefore, circadian regulation of normal SSC activation and division is 
critical[135]. Shift workers, with aberrant circadian regulation, have an increased risk for the development of 
cancer[136,137]. Metabolic and circadian regulation control the timing and the mode of SSC division[138] and 
metabolic pathways through nuclear receptors (e.g., PPAR, Rev-Erbα and β) play critical roles in circadian 
integration of metabolism energetics[139,140]. Clock, part of the master circadian regulatory circuit mediated 
by the Clock/Bmal1 transcriptional complex, is recruited to p300 in vivo in a time-dependent manner[141]. 
Evolutionarily, it would seem logical that mechanisms to enhance SSC asymmetric differentiation and 
symmetric differentiative divisions of CSC or pre-CSC would have evolved. In fact, numerous naturally 
occurring CBP/catenin antagonists have evolved. Returning to the concept of differentiation therapy, all-
trans retinoic acid (ATRA), a vitamin A derivative, via its nuclear receptor complex (RAR/RXR) acting as a 
CBP/catenin antagonist is very effective in treating Acute Promyelocytic Leukemia. ATRA, similar to ICG-
001 does not kill malignant cells but rather induces them to differentiate. Vitamin D plays an important role 
in cancer prevention through the (VDR/RXR) nuclear receptor complex and both ATRA and VitD have 
been shown to antagonize aberrant Wnt signaling in the context of malignancy[142]. Nuclear receptor family 
members, via competition with β-catenin for binding to the N-terminus of CBP, phenocopy CBP/catenin 
antagonists. However, synergistic effects on the activation of gene expression by nuclear receptors and 
Wnt signaling have been demonstrated (e.g., ATRA and Wnt)[143] and nuclear receptors also on their own 
control the expression of various transcriptional cassettes. Thus, nuclear receptor family members are not 
simply “pure antagonists” of CBP/catenin transcription and therefore have significant differences from small 
molecule direct CBP/catenin antagonists.

The LXXLL sequence present in the amino termini of both CBP and p300 is highly conserved and can 
recruit both RAR/RXR and VDR/RXR complexes, and potentially all other nuclear receptor complexes 
including AR, PPAR, and others. Not surprisingly, multiple nuclear receptors can effect stem cell 
maintenance or initiate differentiation in a manner similar to small molecule p300/catenin or CBP/catenin 
antagonists[23,144]. However, in contrast to modulation of nuclear receptors, which can cause developmental 
defects, selectively antagonizing the CBP/catenin interaction with ICG-001, even at very high levels, 
is extremely safe and has no deleterious effects on mouse embryonic development[118,145]. Female mice 
treated topically or orally with high doses of ICG-001 throughout pregnancy have normal litters. The 
pups exhibited normal weight and size compared to their control littermates and can reproduce normally, 
demonstrating no deleterious effects to germ cell populations, which interestingly, also prefer asymmetric 
divisions[146,147]. Interestingly, a 27 bp/9aa deletion in CBP between the β-catenin-binding region (DELI-
sequence) and the nuclear receptor (LXXLL) binding sequence is a strongly evolutionarily conserved. 
Using CRISPR/Cas9 editing of p300, we recently demonstrated that this deletion in CBP provided a 
mechanism via steric inhibition, for nuclear receptors to antagonize CBP/catenin signaling, allowing for 
the maintenance of quiescence and initiation of asymmetric divisions in SSC. Whereas β-catenin and 
nuclear receptor signaling can synergize to effect a feed-forward mechanism to drive differentiation and 
lineage commitment utilizing p300, as steric constraints removed by the conserved 9 amino acid insertion 
is sufficient to allow for the simultaneous binding of nuclear receptors and β-catenin[130].

Summary: CSC resistance and differential Kat3 coactivator usage
SSC and CSC utilize Wnt/catenin signaling and differential Kat3 coactivator usage to regulate stem cell 
homeostasis and the balance between self-renewal and differentiation. The fundamental difference between 
SSC and CSC appears to be a preference for asymmetric over symmetric divisions respectively. Increased 
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CBP/catenin transcription is associated with enhanced telomerase activity and the expression of BIRC5/
Survivin[98] required for self-renewal of stem cells. In this regard, targeting CBP/catenin signaling appears to 
represent a common “Achilles’ Heel” in CSC in both solid and liquid tumors[23,104,113,148]. Aberrant regulation 
of catenin/Kat3 coactivator usage enhances CBP/catenin activation at the expense of p300/catenin-
mediated transcription. Preferential use of this coactivator can arise from a vast array of mutations, either 
inherited or acquired, and a wide variety of insults (i.e., chronic inflammation, viral infection, high fat/
caloric diet, and others). Resistance to therapy, radiation, chemotherapy of immunotherapy is associated 
with selection of resistant clone(s) from a pre-existing CSC pool. CBP/catenin antagonists, by taking 
advantage of this fundamental difference between SSC and CSC can safely stochastically differentiate 
away symmetrically dividing CSC without depleting the SSC population that is dividing symmetrically. 
However, in cancer, the transient amplifying population is not sensitive to CBP/catenin antagonists and 
still must be targeted to eliminate the disease, as these populations rely on other pathways (Bcr-Abl, KRAS, 
etc.) to maintain their non-terminally differentiated proliferative status[104,105,114]. The robust safety profile 
of CBP/catenin antagonists could eventually provide an opportunity to utilize them in a “vitamin-like” 
manner as a prophylaxis to the accumulation of pre-CSC or CSCs. 
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