Supplementary Materials

Interpretable model of dielectric constant for rational design of microwave dielectric materials: a machine learning study

Ye Sheng^{1,#}, Yabei Wu^{1,#,*}, Chang Jiang^{1,#}, Xiaowen Cui¹, Yuanqing Mao¹, Caichao Ye^{1,2,*}, Wenqing Zhang^{1,*}

¹Department of Materials Science and Engineering & Institute of Innovative Materials, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China.

²Academy for Advanced Interdisciplinary Studies & Guangdong Provincial Key Laboratory of Computational Science and Material Design, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China. [#]Authors contributed equally.

*Correspondence to: Dr. Yabei Wu, Dr. Caichao Ye, Prof. Wenqing Zhang, Department of Materials Science and Engineering & Institute of Innovative Materials, Southern University of Science and Technology, No. 1088 Xueyuan Avenue, Nanshan District, Shenzhen, Guangdong 518055, China. E-mail: wuyb3@sustech.edu.cn; yecc@sustech.edu.cn; zhangwq@sustech.edu.cn

Supplementary Figure 1. Machine learning results of τ_f for quaternary materials. (A) RF ranking of importance of material features for τ_f in the quaternary materials. (B) Variation of R² and RMSE (in the black bracket) in the prediction model of τ_f as a function of iteration steps. (C) Scatter plot of predicted τ_f versus experimental values for the quaternary materials after six iterations.

Supplementary Figure 2. Machine learning results of Q_f for quaternary materials. (A) RF ranking of importance of material features for Q_f in the quaternary materials. (B) Variation of R² in the prediction model of Q_f as a function of iteration steps. (C) Scatter plot of predicted Q_f versus experimental values for the quaternary materials after four iterations.

Supplementary Figure 3. Machine learning results of ε_r for ternary materials. (A) RF ranking of importance of material features for ε_r in the ternary materials. (B) Variation of R² and RMSE (in the black bracket) in the prediction model of ε_r as a function of iteration steps. (C) Scatter plot of predicted ε_r versus experimental values for the ternary materials after four iterations.

Supplementary Figure 4. Machine learning results of τ_f for ternary materials. (A) RF ranking of importance of material features for τ_f in the ternary materials. (B) Variation of R² and RMSE (in the black bracket) in the prediction model of τ_f as a function of iteration steps. (C) Scatter plot of predicted τ_f versus experimental values for the ternary materials after six iterations.

Supplementary Figure 5. Machine learning results of Q_f for ternary materials. (A) RF ranking of importance of material features for Q_f in the ternary materials. (B) Variation of R² in the prediction model of Q_f as a function of iteration steps. (C) Scatter plot of predicted Q_f versus experimental values for the ternary materials after four iterations.

The following are the predicted models (equations) in terms of the features of quaternary and ternary materials:

1, Prediction model of ε_r for quaternary materials:

$$\varepsilon_{r} = 0.164 \ln (C_{mac}) \cdot \left\{ 0.854 \cdot \frac{(C_{ap} + D_{ap}) \cdot \cos (A_{x})}{C_{ap}} \cdot \left[0.31 \frac{C_{cp} \cdot B_{cn} \cdot C_{mac} \cdot \sqrt{A_{ap}}}{e^{C_{cp}}} + 9 \times 10^{-2} D_{x}^{4} \cdot A_{cp} \cdot C_{ap} \cdot (A_{mac} + B_{mac}) + 3 \right] - 1.3 \times 10^{-4} \cos (A_{ap}) \cdot \cos (A_{x}) \cdot e^{B_{cn}} - 0.05 \cos (A_{x}) + 9 \frac{A_{ap} \times B_{ir} \times C_{ir}}{B_{cn} \times C_{mac} \times D_{x}^{3}} - 1.26 \right\} + 3.1 \times 10^{-3} A_{x} \cdot (A_{mac} - C_{mac}) \cdot (4.6 \times 10^{-4} \frac{B_{cn} \cdot C_{mac} \cdot \sqrt{A_{ap}} \cdot A_{cp} \cdot C_{ap} \cdot (A_{mac} + B_{mac})}{D_{mac}^{2}} + 11 \right) + 1.4$$

$$(1)$$

2, Prediction model of τ_f for quaternary materials:

$$\tau_{f} = 11.17 \frac{(B_{v}+C_{v})\cdot D_{x}\cdot A_{v}\cdot \varepsilon_{r}\cdot C_{ced}}{(A_{cp}+C_{cp})\cdot C_{av}} + 44.92 \frac{(B_{v}+C_{v})\cdot A_{v}\cdot D_{x}^{2}\cdot \sin(A_{cn}\cdot A_{ir})}{A_{cp}+C_{cp}} + 1.69 \times 10^{2} \frac{D_{x}\cdot [B_{v}+A_{v}\cdot \sin(B_{ir})]}{A_{v}\cdot (A_{cp}+C_{cp})} - \frac{364.72\cdot D_{x}}{(A_{cp}+C_{cp})} - 1.5 \times 10^{-2} \frac{(B_{av}-C_{av})\cdot (A_{v}+B_{v})\cdot C_{ir}\cdot \varepsilon_{r}}{A_{v}} - 1.63(B_{av} - C_{av})\cdot C_{ir} - 4.44$$

$$(2)$$

3, Prediction model of Q_f for quaternary materials:

$$Q_{f} = 1.2 \frac{B_{ap}}{B_{ap} + D_{ap}} \cdot \left\{ 3.7 \ln \left(B_{aw} \right) \cdot \left\{ 0.3 \frac{C_{cn}}{D_{x} \cdot C_{en}} \cdot \left[5.8 \times 10^{5} \left(\frac{C_{cn} \cdot (B_{x} + C_{x})}{B_{ap}^{2} \cdot C_{en} \cdot B_{cn} \cdot \varepsilon_{r}} \right)^{\frac{1}{3}} + 27.9C_{cn}^{6} \cdot B_{ap} \cdot \frac{A_{x}^{6} \cdot C_{mac}}{B_{ym}} - 4.7 \times 10^{3} \right] + 3.5 \times 10^{3} \frac{B_{en} \cdot |A_{en} - C_{en}|}{C_{ap}} + 135.1 \right\} + 1.5 \times 10^{4} B_{x} \cdot A_{ir} \cdot B_{aw} \cdot \left(\frac{C_{cn}}{B_{ap} \cdot C_{en} \cdot \varepsilon_{r}} \right)^{\frac{1}{2}} \cdot \left(\frac{1}{C_{me}} \right)^{\frac{1}{3}} + 92.2B_{x} \cdot A_{ir} \cdot B_{aw} - 4.2 \times 10^{3} \right\} + 2.4 \times 10^{6} \frac{B_{x} \cdot A_{cn}}{A_{ap}^{6}} - 1.5 \times 10^{3}$$

$$(3)$$

4, Prediction model of ε_r for ternary materials:

$$\begin{split} \varepsilon_{r} &= 0.76 \frac{A_{ir}}{\sin(A_{ir})} \Big\{ 0.87 \frac{B_{mac}}{(B_{mac}+C_{mac})} \Big\{ 0.973 \Big\{ \big(0.3\sqrt{A_{cn}} - 4.7 \times 10^{-4} A_{mac} \cdot sin(A_{mac}) \big) \Big[3.66 \times 10^{-4} B_{ap} \cdot B_{mac} \cdot B_{cp} \cdot (C_{cn} - A_{cn}) \cdot cos(B_{cp}) + 8.3 \times 10^{-4} \frac{C_{x} \cdot A_{cn} \cdot A_{mac} \cdot A_{cp}^{3}}{A_{cp}+B_{cp}} + 6.26 \Big] + 2.9 \Big\} + 1.6 \times 10^{-5} \frac{B_{mac} - A_{mac}}{A_{x}^{3}} + 0.19 \Big\} + 3 \times 10^{-2} \Big\{ 0.973 \Big\{ \big(0.3\sqrt{A_{cn}} - 4.7 \times 10^{-4} A_{mac} \cdot sin(A_{mac}) \big) \Big[3.66 \times 10^{-4} B_{ap} \cdot B_{mac} \cdot B_{cp} \cdot (C_{cn} - A_{cn}) \cdot cos(B_{cp}) + 8.3 \times 10^{-4} \frac{C_{x} \cdot A_{cn} \cdot A_{mac} \cdot A_{cp}^{3}}{A_{cp}+B_{cp}} + 6.26 \Big] + 2.9 \Big\} + 1.6 \times 10^{-5} \frac{B_{mac} - A_{mac}}{A_{x}^{3}} + 0.19 \Big\} + 3 \times 10^{-2} \Big\{ 0.973 \Big\{ \big(0.3\sqrt{A_{cn}} - 4.7 \times 10^{-4} A_{mac} \cdot sin(A_{mac}) \big) \Big[3.66 \times 10^{-4} B_{ap} \cdot B_{mac} \cdot B_{cp} \cdot (C_{cn} - A_{cn}) \cdot cos(B_{cp}) + 8.3 \times 10^{-4} \frac{C_{x} \cdot A_{cn} \cdot A_{mac} \cdot A_{cp}^{3}}{A_{cp}+B_{cp}} + 6.26 \Big] + 2.9 \Big\} + 1.6 \times 10^{-5} \frac{B_{mac} - A_{mac}}{A_{cp}+B_{cp}} + 6.26 \Big] + 2.9 \Big\} + 1.6 \times 10^{-5} \frac{B_{mac} - A_{mac}}{A_{cp}+B_{cp}} + 6.26 \Big] + 2.9 \Big\} + 1.6 \times 10^{-4} \frac{B_{mac}}{B_{mac}} \cdot B_{mac} \cdot B_{mac}$$

$$10^{-5} \frac{B_{mac} - A_{mac}}{A_x^3} + 0.19 \Big\}^3 \frac{1}{|B_{mac} - C_{mac}|} + 2.87 \Big\} - 1.5 \times 10^{-4} \frac{B_{mac}}{A_x \cdot \cos(A_{ap})} + 1.08$$
(4)

5, Prediction model of τ_f for ternary materials:

$$\tau_{f} = 1.09 \frac{B_{ap}}{B_{ap}+C_{ap}} \left\{ -0.33B_{en} \cdot (B_{en} - C_{en}) \cdot \left\{ 0.75 \frac{A_{ced}}{\sin(A_{ced})} \left[4.1 \frac{1}{(A_{v} - C_{v})} \cdot (-0.87 \times \frac{DK^{3} \cdot \sin(A_{v}) \cdot \sin(B_{v})}{B_{mac}} + 7.88 \times \frac{\cos|\sin(\varepsilon_{r}) - \sin(A_{cp})|}{C_{x}^{3}} \right] + 1.9 \times 10^{-3} \frac{B_{mac} - A_{mac}}{\cos(B_{en})} - 2.27 \right] + 1.89 \frac{B_{ap} \cdot B_{av}^{3}}{A_{mac}} + 3.06 \right\} - 0.14 \right\} + 4.73 \times 10^{-2} \frac{|A_{mac} - B_{mac}|}{A_{x}} \div \left(-3.57 \frac{DK^{3} \cdot \sin(A_{v}) \cdot \sin(B_{v})}{B_{mac} \cdot (A_{v} - C_{v})} + 32.3 \frac{\cos|\sin(\varepsilon_{r}) - \sin(A_{cp})|}{C_{x}^{3} \cdot (A_{v} - C_{v})} - 3 \times 10^{2} \frac{1}{A_{v} - C_{v}} + 1.9 \times 10^{-3} \frac{B_{mac} - A_{mac}}{\cos(B_{en})} - 2.27 \right) - 2.2 \quad (5)$$

6, Prediction model of Q_f for ternary materials:

$$Q_{f} = 0.96 \frac{B_{me}}{B_{me} + C_{me}} \left\{ 1.02 \cos\left(e^{-\frac{C_{mac}}{\varepsilon_{r}}}\right) \cdot \left\{0.36 \frac{A_{cn}}{e^{A_{ir}}} [1.82C_{x} \cdot (A_{x} + C_{x})(9.13 \times 10^{4} \left[e^{-A_{ap}} + e^{-e^{-\frac{C_{mac}}{\varepsilon_{r}}}}\right] + 3.55 \frac{A_{cn} \cdot B_{cn}^{2}}{A_{x} \cdot A_{ir} \cdot (A_{me} + B_{me})} - 6.47 \times 10^{4} \right) + 3.73 \times 10^{4} \frac{B_{aw}}{A_{mac}(B_{ym} - A_{ym})} + 6.4 \times 10^{2} - 11.3 \frac{A_{me} \cdot B_{mac}}{A_{ir} \cdot B_{cn}} + 7.75 \times 10^{3} \right\} + 1.04 \times 10^{4} \sin\left(A_{ap}\right) \cdot \sin\left(B_{cn}\right) + 45.1\right\} - 3.69 \times 10^{5} \frac{\cos\left(9.13 \times 10^{4} \left[e^{-A_{ap}} + e^{-e^{-\frac{C_{mac}}{\varepsilon_{r}}}}\right] + 3.55 \frac{A_{cn} \cdot B_{cn}^{2}}{A_{x} \cdot A_{ir} \cdot (A_{me} + B_{me})} - 6.47 \times 10^{4} \right)}{B_{me}^{3}} + 3.64 \times 10^{2}}$$
(6)

Index	Notation	Feature
1	ir	Ionic radius
2	ap	Atomic polarizability
3	cp	Chemical potential
4	cn	Coordinate number
5	mac	mass attenuation coefficient for CrK_{α}
6	Х	Normalized composition
7	ced	Core electron distance
8	V	Valence state
9	av	Atomic volume
10	aw	Atomic weight
11	ym	Young's modulus
12	me	melting enthalpy
13	en	Electronegativity

Supplementary Table 1. The associated features in these fitted models are presented in the table