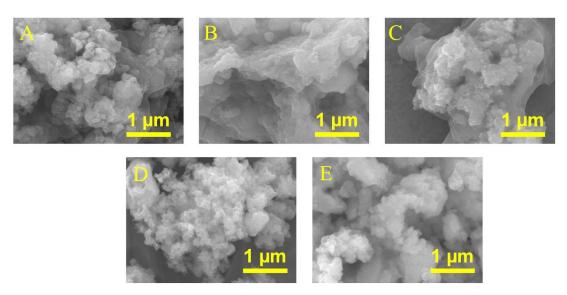
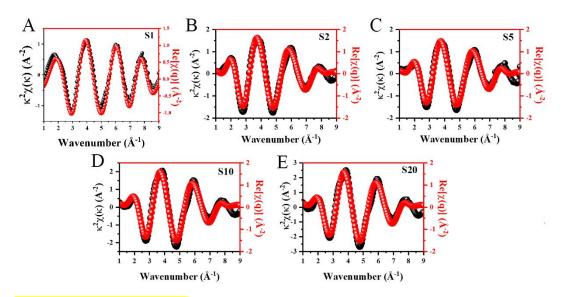
Supplementary Materials

Ferromagnetism of single atom above room temperature

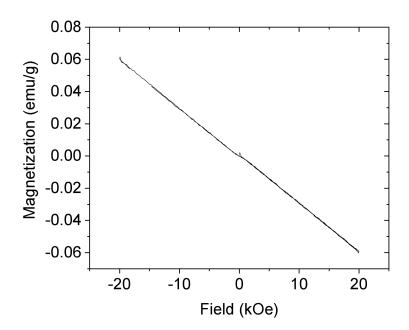
Yitong Cao^{1,#}, Xun Geng^{1,#}, CI Sathish¹, Mengyao Li², Sohail Ahmed³, Liang Qiao⁴, Xiaojiang Yu⁵, Mark B. H. Breese⁵, Rongkun Zheng⁶, Dewei Chu², Jiabao Yi^{1,*}

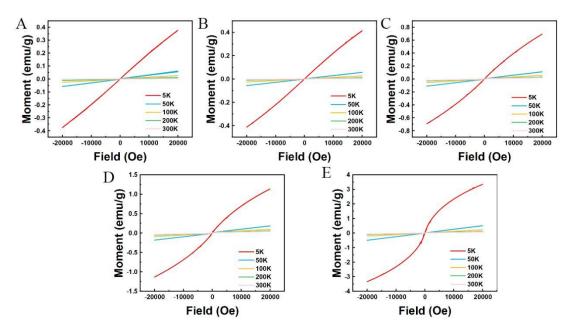

¹Global Innovative Centre of Advanced Nanomaterials, School of Engineering, University of Newcastle, Callagha, NSW 2308, Australia.
²School of Materials Science and Engineering, University of New South Wales, Kensington, NSW 2052, Australia.
³Aerospace and Aviation Campus, Air University, Kamra 43570, Pakistan.
⁴School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China.
⁵Singapore Synchrotron Light Source, National University of Singapore, Singapore 117603, Singapore.
⁶School of Physics, University of Sydney, Sydney, NSW 2006, Australia.

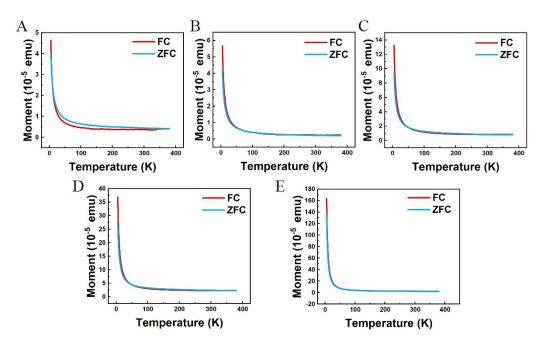
*Correspondence to: Dr. Jiabao Yi, Global Innovative Centre of Advanced Nanomaterials, School of Engineering, University of Newcastle, 130 University Drive, Callagha, NSW 2308, Australia. E-mail: <u>Jiabao.yi@newcastle.edu.au</u>


Sample	Мо	S	Ni	Composition	1T/(1T + 2H)
S0	33.4 at%	66.6 at%	0	MoS _{1.99}	80.5%
S1	35.9 at%	64.1 at%	0	$MoS_{1.79}$	76.5%
S2	32.4 at%	62.7 at%	4.7 at%	$Ni_{0.15}MoS_{1.93}$	73.7%
S5	28.4 at%	61.1 at%	10.7 at%	$Ni_{0.05}MoS_{2.15}$	74.5%
S10	24.1 at%	59.6 at%	16.2 at%	Ni _{0.67} MoS _{2.47}	76.4%
S20	20 at%	56.8 at%	23.2 at%	Ni1.16MoS2.84	67.0%

Supplementary Table 1. The atomic ratio and 1T phase proportion of the Ni-SAIs samples identified by XPS


XPS: X-ray photoelectron spectroscopy.


Supplementary Figure 1. SEM images of Ni-SAIs samples. (A) S1; (B) S2; (C) S5; (D) S10; (E) S20. SEM: Scanning electron microscope.


Supplementary Figure 2. The reliable FT is proved by good *k-q* matching. FT: Fourier-transform.

Supplementary Figure 3. M-H loop of pure MoS₂ nanosheets taken at room temperature.

Supplementary Figure 4. Hysteresis loops of Ni-MoS₂ samples at different temperatures. (A) S1; (B) S2; (C) S5; (D) S10; (E) S20.

Supplementary Figure 5. ZFC and FC curves of S1 (A), S2 (B), S5 (C), S10 (D) and S20 (E). ZFC: Zero field cooling; FC: field cooling.