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Abstract
The recent development in the areas of deep learning and deep convolutional neural networks has significantly pro-
gressed and advanced the field of computer vision (CV) and image analysis and understanding. Complex tasks such
as classifying and segmenting medical images and localising and recognising objects of interest have become much
less challenging. This progress has the potential of accelerating research and deployment of multitudes of medical
applications that utilise CV. However, in reality, there are limited practical examples being physically deployed into
front-line health facilities. In this paper, we examine the current state of the art in CV as applied to the medical
domain. We discuss the main challenges in CV and intelligent data-driven medical applications and suggest future
directions to accelerate research, development, and deployment of CV applications in health practices. First, we
critically review existing literature in the CV domain that addresses complex vision tasks, including: medical image
classification; shape and object recognition from images; andmedical segmentation. Second, we present an in-depth
discussion of the various challenges that are considered barriers to accelerating research, development, and deploy-
ment of intelligent CV methods in real-life medical applications and hospitals. Finally, we conclude by discussing
future directions.
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1. INTRODUCTION
Computer vision (CV) is concerned with giving the computer the ability to process and analyse visual content
such as 2D, videos, and 3D images. CV is common across a wide range of applications, including oil and
gas [1–3], fishing and agriculture [4], medical image analysis [5–9], robotic surgery [10,11], and others.

CV tasks can be broadly categorised into: image classification, object detection and recognition from images,
and image segmentation tasks [12]. Image classification tasks are considered among the most common CV
problems [13,14]. These are widely used, especially in the medical domain, and are often formulated as a super-
vised machine learning (ML) problem [15], where a set of features 𝑋 (often extracted from the image) is used to
predict a certain outcome 𝑦 referred to as a label. Formally, the aim of a classification task is to find a function
ℎ(𝑥) that maps an input image 𝑋 to 𝑦 as

ℎ(𝑥) : 𝑋 → 𝑦, where 𝑦 represents a set of discrete classes (e.g., classes representing the severity of the dis-
ease as mild, moderate, severe). A typical example is to build an automated diagnosis/classification system of
pigmented skin diseases using dermatoscopic images [16]. A similar task [17] is presented where a classification
model to classify patients as either COVID-19 infected or normal (healthy) was proposed based on a collection
of chest X-ray images of COVID-19 patients. It should be noted that the key task in both of these examples
is to decide if an image contains a specific disease or not, which is considered a binary classification problem.
The labelled datasets for these kinds of supervised ML problems are represented as feature vectors, as can be
seen in Equation 1. 𝑋 can be extracted features of each image, but in these examples, it is simply the pixels of
the image itself. 𝑌 is the labels of the images in the dataset.

𝑋 =


𝑥11 𝑥12 . . . 𝑥1𝑛
𝑥21 𝑥22 . . . 𝑥2𝑛
...

...
. . .

...

𝑥𝑛1
... . . . 𝑥𝑚𝑛


, 𝑌 =



𝑦1
..

..

..

𝑦𝑚


(1)

Researchers in the past have developed various ways to extract low-level and high-level features from images.
Typical features might include corner points, edges, colour intensity, scale-invariant features such as SIFT and
SURF [18,19] and others. SIFT and SURF, in particular, attracted attention from the research community be-
cause these features are invariant to image scaling, rotation, pose and illumination, which were considered key
challenges in CV andmedical images. These features are then used to trainMLmodels to perform a certain su-
pervised classification task. As can be seen in Equation 1, ML provides computers with the ability to learn from
historical observation without the need to explicitly program it, or design heuristics to account for the infinite
possible combination of features within these observations. There is a wide range of ML algorithms [15], and
the choice of a particular algorithm is often informed by several factors, such as the type, size, and complexity
of the data and the task. Common ML methods include support vector machines (SVM) [20], ensemble-based
methods such as random forests (RF) [21], artificial neural networks (ANN) [22], and others. Before the use of
deep learning (DL) and deep convolutional neural networks (CNN) [23] became widespread in 2012, this tra-
ditional approach was the most common way of handling CV tasks, including classification, object detection,
and object tracking. However, one key disadvantage of such an approach is that the performance of the chosen
ML model would rely heavily on the quality of the extracted image features. The quality of these features is
often sensitive to various conditions such as light and the object’s orientation within the image, as well as noise
and other factors. This means that deployed solutions involving hand-crafted features might be considerably
less successful than implied by the results using controlled data. That said, methods based on feature extrac-
tion and engineering (hand-crafted features) continue to be commonly used across CV tasks such as object
detection and localisation, and segmentation. For example, in [24],the authors used a modified version of Viola
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Figure 1. Traditional CV methods (top) vs. deep learning approach (bottom) [11].

and Jones method [25] to detect objects from ultrasound images and reported relatively good results. How-
ever, progress in solving many CV tasks (e.g., locating the area of interest in an image) continues to challenge
the research community. Moreover, research experiments are often carried out in controlled settings, which
means that some solutions cannot generalise well across unseen data. It should be noted that generalisation
is also considered a problem for DL-based methods, however, with larger volumes of data, transfer learning,
data augmentation and other methods, it can be argued that DL-based methods often generalise better than
traditional ML-based methods.

The advances in DL and deep CNN research and development since 2012 [23], resulted in significant progress
in the CV domain. Thanks to improved hardware to run the algorithms and the availability of large quantities
of data, DL-based methods have become more and more widespread. They are now considered the most
common and top-performing algorithms in handling many CV tasks. The key difference between traditional
methods that use hand-crafted features and DL-based methods, is that the latter is capable of learning the
features (underlying representation) of the input images in an end-to-endmanner without the need for feature
extraction or engineering as illustrated by Gumbs et al. [11] in Figure 1. The ability of DL models to learn
and capture the underlying representation of the training data has significantly improved the performance not
only in CV but also across various domains such as: Gaming and AI [26], Natural Language Processing [27],
Health [28], Cyber Security [29] and others.

CNN-based methods significantly advanced the field of CV, particularly in the areas of medical image analysis
and classification [5]. These methods have been used since the 1980s. However, due to the increase in com-
putation power and algorithmic development, they are considered now a cornerstone across various vision
tasks. CNNs have the ability to capture the underlying representation of the images using partially connected
layers and weights sharing. Many CNN architectures consist of a small number of convolution layers, followed
by activation functions, and pooling layers for down-sampling of the images, as can be seen in Figure 2. The
repeated application of filters (kernels) to the input image results in a map of activations (often called feature
maps), which indicate locations of interest in the input image.

However, it should be noted that training modern, deep CNN-based methods require large volumes of data.
In supervised ML applications, such data (images, videos, …) must be fully annotated, and this is not always
possible or practical. Therefore, in some cases, transfer learning [30] is utilised in order to overcome this re-
quirement. In short, transfer learning is a common technique that aims at reusing pre-trained models that
were built to solve a particular task to solve new tasks. Pomponiu et al. [6] used a pre-trained CNN to learn the
underlying representation of images and extract representative features that help detect skin cancer disease.
Then, they fed the extracted features into a k nearest neighbour classifier (kNN) and reported an average ac-
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Figure 2. Schematic diagram of CNN model with arbitrary architecture.

curacy of 93% with similar sensitivity and specificity. Similarly, Esteva et al. [7] trained a CNN model using a
dataset of 129,450 clinical images represent various skin diseases. The authors also used a pre-trainedmodel to
boost performance and reported results comparable with experts. Existing literature shows clearly how CNN-
based methods have played a crucial role in solving complex classification tasks in the medical domain. A
recent review shows clearly how CNN-based methods advanced research in many areas such as breast cancer,
prostate, lung, skin and other types of cancer disease [31]. Similarly, Levine et al. [8], in a relatively recent work,
showed how DL helped to greatly advance cancer diagnosis, and that DL-based method achieved comparable
performance to medical experts in particular classification tasks such as radiology and pathology. That said,
it must be noted that even with transfer learning and the availability of large volumes of medical images to
train DL models, there is a concern regarding the model’s ability to generalise across unseen data or data from
different resources. In other words, more work on cross-data evaluation needs to be carried out. Aggarwal
et al. [32] recently argued in a detailed review paper that the diagnostic accuracy of DL methods on medical
images might be overestimated. The authors pointed out the urgent need for a more consistent approach in
developing and evaluating DL-based methods in medical settings.

Shape and object detection and recognition from images have also been greatly advanced using CNN and
DL-based methods. These tasks are of paramount importance in the medical domain and robotic surgery [28].
Here, the task is not only to classify to check if an image shows some form of abnormality, but also to localise
that abnormality within the medical image. Typical DL-based methods for object detection and recognition
from images include, Faster Region-based CNN (R-CNN) [33], single shot detectors (SSD) [34], region-based
fully convolutional networks (R-FCN), [35], You Only Look Once (YOLO ) [36] and others. These methods have
shown superior performance across various complex CV tasks in the medical domain, in particular in object
localisation and recognition [37–39]. These object recognition methods -in practical terms- vary in terms of
accuracy in recognising objects and their suitability for real-time object detection and tracking. For example,
YOLO is considered among the fastest object recognition methods. However, R-CNN is often more accurate;
for technical comparison between these methods, the reader is referred to [40]. But overall, this progress in the
development of object recognition methods has also helped solve some complex CV tasks such as detecting
and tracking objects of interest in video footage [41–43], which is an important and very common task in robotic
surgery. For example, in [41],a dataset of videos from ten surgeons was used to build a DL model to speed up
detection and localisation of tools in robot-assisted surgery (RAS). Similarly, Lee et al. [42] used a collection of
videos to train a DL model to track surgical instruments to evaluate surgeons’ skills in performing procedures
by robotic surgery and reported good results. While the provision of such datasets gives opportunities for
advancement, it also serves to illustrate the challenge of data availability, and the authors of [42]conceded that
their dataset did not provide an exhaustive reference of all possible surgical situations. Various other tasks were
also made possible due to these advancements that took place at the algorithmic level, such as processing and
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analysing Magnetic Resonance Imaging to detect brain tumours [44], understanding CT scan images [9], and
localising abnormalities in chest X-ray images [5]. Interestingly, in [5],the authors presented a method based
on dividing the image into a set of patches (Patch-based Convolutional Neural Network), and using prior
knowledge of positive and negative images, their proposed method learned to localise the area of interest
(i.e. the area in the image that demonstrated abnormality). It should be noted that many of these tasks were
inherently challenging for traditional CV-based methods. However, using the latest development in DL- and
CNN-based methods and good-sized datasets, these tasks became achievable.

Medical image and video segmentation [45,46] has also greatly benefited from the progress inDL-methods’ devel-
opment. Image segmentation is an important CV task for certain medical applications such as robotic-assisted
surgery education [47] and other relevant applications. Examples include: the work presented in [45] for robotics
instrument segmentation, in [48]for surgery instrument segmentation, and in [46]for segmenting surgery videos.

It can be argued that progress that took place at the algorithmic level in DL- and CNN-based methods, as well
as the availability of high-performing computing machines powered with graphical processing units (GPUs)
have significantly progressed research and development in medical image analysis and understanding. For
a recent review on how progress helped advance many robotic-assisted surgeries, and other medical-related
applications, the reader is referred to [49]. Additionally, the availability of large volumes of medical images
and videos in the public domain also has advanced and accelerated the development of various medical ap-
plications that use core CV tasks (e.g., classification, object recognition, segmentation). Examples of these
datasets include: MURA [50], which is a public domain dataset containing 40,561 musculoskeletal radiographs
from 14,863 studies representing 11184 different patients; the colon cancer screening dataset [51] containing 40
colonoscopy videos comprising almost 40,000 image frames), Lung images dataset [52] comprising CT scans
annotated with abnormality information, and others. This progress has the potential of accelerating the deploy-
ment of various medical applications that utilise CV. However, existing literature shows that there are limited
practical examples being deployed into front-line health facilities [53]. In this paper, we focus on CV-related
literature, recent development, and key challenges, with emphasis on the most common CV vision tasks (clas-
sification, segmentation, and object detection). These tasks are considered the key building blocks for any CV
solution in the medical domain. The main contributions of the paper can be outlined as follows:

• The paper provides an in-depth critical technical review of the latest developments in medical image anal-
ysis and understanding. We critically review existing literature in the CV domain that addresses complex
vision tasks, including medical image classification, shape and object recognition, and medical image seg-
mentation

• Comprehensive discussion and critical evaluation of variousmedical image applications that utilise medical
images and CV-based techniques with discussion and evaluation of existing medical datasets in the public
domain

• We present an in-depth discussion of the various challenges that are considered barriers to accelerating
research, development and deployment of intelligent CVmethods in real-life medical applications and hos-
pitals

The rest of this paper is organised as follows: In section 2, we discuss CV and the latest developments in the
context of medical images and with focus on key tasks such as classifying, segmenting and recognising shapes
and regions of interest. Section 3 focuses on medical image applications and list medical datasets of various
types that exist in the public domain, providing a great opportunity to accelerate research and development in
this area. Challenges in CV and medical applications are discussed in Section 4, and finally, conclusions and
future directions are presented in Section 5.
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2. MEDICAL IMAGES
Themost common computer vision (CV) tasks in applications that utilise medical images include image classi-
fication [6,8], medical image segmentation [45,47,48] and detecting and recognising shapes and objects of interest
in medical images [41–43]. Deep learning (DL)-basedmethods have proven to be superior over other traditional
methods in handling such challenging tasks and across a wide range of medical applications such as cancer
detection, magnetic resonance imaging (MRI) segmentation, X-ray analysis and others. In this section, we pro-
vide a thorough and deep technical review of existing literature that utilise the latest developments in DL- and
convolutional neural networks (CNN)-based methods to progress medical image analysis and understanding.

2.1 Classification
In CV, image classification is a fundamental task that also plays an important role in computer-aided diagnosis
(CAD) systems over the decades. Traditionally, image classification is used to classify, or label, an image, or the
sequence of images, as including one, or more, of a number of predefined diseases, or as without diseases (i.e.
normal case) in the CAD system for medical image analysis [54,55]. Common clinical uses of DL-based medi-
cal image classification methods include: skin cancer classification in dermoscopic images [56,57], lung cancer
identification in CT images [58], breast cancer classification in mammograms [59] and ultrasound [60] images,
brain cancer classification in MRI images [61,62], diabetic retinopathy [63,64], eye disease recognition in retinal
fundus images [65], and so on. In addition, the classification of histopathology images is also widely used for
identifying different types of cancers such as colon cancer [66], prostate cancer [67], breast cancer [68], and ovar-
ian cancer [69]. Recently, DL-based methods have also been popularly utilised to identify COVID infections in
the chest X-ray images [55], and although the dataset for this application was limited to 150 patients, the deep
neural network achieved 96% sensitivity. In medical image classification, CNN is the state-of-the-art classifi-
cation approach with the continuous development of DL models, including fine-tuning of existing models for
application in the medical domain and the development of new models and algorithms specifically for medi-
cal applications. A fine-tuned ResNet-50 [48] architecture is used to classify skin lesions using dermatoscopic
images in [56], where the authors observed that the classification accuracy of some models might be highly
dependent on the clinical setting and the precise location of the skin lesions in the captured images of the
dataset. In [70],an optimal deep neural network (ODNN) with linear discriminant analysis (LDA) is utilised to
classify lung cancer in CT images. The conditional generative adversarial network (cGAN) with a simple CNN
is proposed in [59] to classify breast cancer subtypes in mammograms, achieving 72% accuracy in classifying
the shape of a tumour. In [61], an enhanced ResNet is applied to solve the brain cancer classification problem
in MRI images. To classify diabetic retinopathy, an active DL method is proposed in [63]. Recent popular
image classification architecture, InceptionResNetV2 has been used to identify retinal exudates and drusen in
ultra-widefield fundus images [65]. A multiscale decision aggregation is used in [67], pre-trained Inception-V3
in [68], and a hybrid evolutionary DL in [69]to classify: prostate, breast, and ovarian cancer, respectively.

In the field of thermography, classification is used in a wide range of medical applications, frommass screening
for the fever to detection of vascular abnormalities and some cancer diagnoses [71]. Thermography is a non-
invasive and a relatively portable method of gathering images to aid diagnosis. The use of thermal cameras to
identify the presence of fever in subjects in public spaces had recently risen to the fore with the COVID-19
pandemic when mass screening for fever was recommended as an early preventative measure [72]. Infrared
technology had been utilised with some success during the SARS outbreak as a contact-free method of mass-
screening for fever detection [73],identifying 305 febrile patients from a total of 72,327 outpatients at a busy
hospital. More recently, thermal imaging in public spaces has become ubiquitous, and CV techniques have
been applied to improve the accuracy of temperature readings and fever classification from these devices. It
has been found that the maximum temperature from the inner canthi is more indicative of fever than the
traditional forehead scan [74], and CV techniques have been developed to localise these areas [75].

Thermal image features combined with machine learning have achieved high levels of accuracy in detect-
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Figure 3. Schematic diagram of object detection methods.

ing the presence of facial paralysis (93% accuracy) [76,77], carotid artery stenosis (92% accuracy, SVM using
features from thermal images) [78] and localisation of areas of the brain most at risk during ischemic stroke
intervention surgery [79]. Breast cancer is also a very active field of development for thermal images with the
non-invasive thermal camera provides a more attractive option than traditional mammography [80]. DL meth-
ods have seen some success in detecting breast cancer, with over 98% classification accuracy on some datasets
using CNN [81,82]. In applications of mental health, emotion detection from thermal images is a growing field,
too, which already has a number of large datasets suitable for training CV models [83]. Given the growing
accessibility of thermal cameras, this field might provide an emerging opportunity for remote mental health
monitoring and treatment.

2.2 Object detection
Overall, object detection models consist of localisation and identification tasks. The localisation task leads to
localising the object position in the image using a bounding box or mask to define which pixels within the
image depict the object of interest. The identification task refers to recognise the objects referring to specific
pre-defined categories, or to classify the object within the bounding box. Object detection algorithms are
commonly used in the medical image analysis domain in order to detect the initial abnormality symptoms of
patients. Typical examples include, detection of the lung nodule in the X-ray [84] or chest CT images [85], breast
lesion detection in mammograms [86] and ultrasound images [87].

Generally, there are two approaches that exist in DL-based object detection models: anchor-based methods
and anchor-free methods. Anchor-based methods can be divided into single-stage or multistage techniques.
However, while the single-stage technique is fast or computationally efficient, detection performance is not
better than the multistage technique. The multistage technique has the best detection performance but is
computationally costly. Moreover, there are two common single-stage techniques that are extensively used
as single-stage detectors with simple architectures: YOLO [36] and SSD [34]. In both YOLO and SSD, a feed-
forward CNN creates a fixed number of bounding boxes and their respective scores for the appearance of
object instances of pre-defined classes in the boxes; non-maximum suppression is applied to generate the final
prediction map. YOLO uses only a single-scale feature map whereas SSD uses multiscale feature maps for
improving detection performance. Most of these methods are based on the allocation of the bounding box or
boxes that contain the object/s of interest. As can be seen in Figure 3, the final outcome of an object detection
(e.g., YOLO) is a vector with a set of values representing the coordinates of the center of the bounding box
(𝑏𝑥 , 𝑏𝑦), its height and width (ℎ, 𝑤), and the probability the bounding box contains the class of interest (𝑝𝑐),
and so on.

http://dx.doi.org/10.20517/ais.2021.15


Page 31          Elyan et al. Art Int Surg 2022;2:2445 I http://dx.doi.org/10.20517/ais.2021.15

In contrast to single-stage object detection techniques, two-stage detection techniques produce a group of
regions of interest (ROIs) where a complete object is likely to be found, and recognises each of them. Faster-
RCNN [33] and Mask-RCNN [88] are commonly used examples of the two-stage detection technique. Both
models first produce object proposals by a region proposal network (RPN) and then classify those produced
proposals. The difference between these two models is that Mask-RCNN has an additional segmentation
branch, whereas Faster-RCNN localises objects by defining the co-ordinates of a bounding box.

Currently, there are many researchers focused on developing anchor-free methods of object detection, and
CornerNet [89] is one of them. CornerNet uses a single CNN that reduces the use of anchor boxes by using the
paired key points from the object bounding box top-left and bottom-right corner.

These methods and their extensions have significantly advanced the area of object localisation and recognition.
A recent review shows that many similar medical image analysis tasks are carried out using such DL-based
methods [90]. A typical example, is the work presented by Pang et al. [91], where an extension of YOLO was
used to identify cholelithiasis and classify gallstones in CT images using a large dataset of 223,846 CT images
with gallstone representing 1369 patients. This large dataset contributed to the high accuracy (over 92% in
identifying granular gallstones).

It should be noted however, that making use of these object localisation/recognition methods, require large
volumes of fully annotatedmedical images. Such data may not always be readily available, and data annotation,
in particular, is considered one of the most labor-intensive and expensive tasks in the medical field as will be
in the Challenges section. However, several methods have been presented recently to overcome this hurdle.
For example, the work by Schwab et al. [5] who presented a new approach to localise and recognise critical
findings in chest X-ray images (CHR), using multi-instance learning method (MIL) that joins classification
and detection. The method presented is based on dividing the image into a set of patches (Patch-based CNN).
Using the prior knowledge of positive and negative images, the proposed MIL method learns which patches
in the positive images are negative. Three different public datasets were used, and competitive results where
reported, achieving over 0.9 AUC. Notice here, that there was no requirement to fully annotate all images of the
dataset with localisation information, instead, it was sufficient to know only if a complete image was positive
or negative.

2.3 Segmentation
Image segmentation refers to a pixel-wise classification task that segment an image into areas with the same
attributes. The goal of medical image segmentation is to find the region or contour of a body organ or anatom-
ical parts in images. While object detection methods often produce a bounding box defining the region of
interest, segmentation methods will produce a pixel mask for that region. Applications include: segmentation
of the whole heart [92], lung [93], brain tumours [94], skin [95] and breast tumours [96]. Like other CV tasks, seg-
mentation can also be applied to different medical image modalities. A great breakthrough was achieved in
DL-based image segmentation after the introduction of the Fully Convolutional Neural network (FCN) [97].
U-Net [98] is the most famous end-to-end FCN model used for medical image segmentation. U-Net and its
extensions have also been successfully applied to wide range of medical imaging segmentation tasks, and a
detailed review is presented by Litjens et al. [90].

An improved U-Net with a generative adversarial network (GAN) is applied in [92] to segment the whole heart
from the CT images. An automatic, self-attention based lung segmentation model is proposed in [93] in chest
X-rays. In [94], an attention mechanism is utilised for brain tumour segmentation in MRI multi-modalities
brain images. The conditional generative adversarial network (cGAN) is used in [95] and [96] to segment skin
and breast lesion, respectively.
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(a) (b)

(c)

Figure 4. Segmentation of four chamber of heart in echocardiographic image. (a) a sample echocardiographic image of heart with four
chambers; (b) segmentation results from the six deep learning segmentation algorithms; and (c) ensemble segmentation result with im-
proved performance over the six initial ones.

Heart related applications have benefited greatly from the recent advances in DL. For example, right ventricle
(RV) segmentation to study and detect the anatomically complex shape of the chamber to aid in the diagnosis
of several diseases that are directly related to the RV such as coronary heart disease, congenital heart disease,
pulmonary hypertension, among others. RV is one of the four chambers of the heart, along with the left
ventricle (LV), right atrium (RA) and left atrium (LA). A DL-based framework was proposed by Luo et al. [99]
to segment the chambers of the heart from magnetic resonance images. More specifically for pulmonary
hypertension detection, in a recent study by Dang et al. [100] authors implemented a weighted ensemble of DL
methods based on comprehensive learning particle swarm optimisation (CLPSO). To this end, they trained a
total of six transfer learning models for segmentation, and these were then assembled to get the best possible
output. This outputwas calculated as theweighted sumof segmentation outputs, and theCLPSO algorithmwas
used to optimise the combined weights. Figure 4a shows a sample echocardiographic image, while Figure 4b
presents the six initial segmentation outputs. Finally, Figure 4c shows how the ensemble output outperforms
all of the individual segmentation masks. These transfer learning systems were retrained using the CAMUS
dataset, which contains 250 images of hearts where only the LV and the LAwere segmented. Later on, clinicians
from ”Hospital 20 de Noviembre” in Mexico city provided 120 sequences with the four chambers segmented,
so that the systems could be retrained once again and were capable of localising all four chambers of the heart.
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Table 1. Summary of existing medical image analysis datasets with the referred literature

Ref. Domain Image modality Application Dataset Methods #Images #Classes

[102]

Brain image analysis

MRI AD/HC classification ADNI DBN with RBMs 300 2
[110] MRI and PET AD/MCI/HC classification ADNI DPN with an SVM 258 3
[111] MRI Brain extraction IBSR, LPBA40 and OASIS, 3D-CNN 188 2
[112] MRI Lacune detection RUNDMC and the FUTURE FCN and 3D CNN 1075 2
[103] T1MRI, fMRI and DTI Survival prediction Private 3D CNN and SVM 69 2
[104]

Retinal image analysis
Fundus Detection of multiple retinal diseases STARE DNN 10000 10

[105] Fndus and Pathology Segmentation of multiple retinal diseases Messidor FCN 1200 4
[113] Fundus Segmentation of retinal blood vessel DRIVE and STARE cGAN 40 2
[106] Fundus Detection and segmentation REFUGE 2018 challenge SSD and cGAN 800 3
[55]

Chest image analysis

X-ray COVID-19 classification COVIDx EDANet 1203 3
[107] X-ray Detection of abnormal pulmonary patterns ACS at ASAN eDenseYOLO 9792 5
[108] X-ray Segmentation of malignant pulmonary nodules Private and National Lung ScreeningTrial (NLST) ResNet-34 5485 2
[114] CT Detection of lung nodule LIDC-IDRI FasterRCNN 3042 2
[85] CT Detection and segmentation of lung nodule LUNA16 and LIDC-IDRI FasterRCNN and AWEU-Net 5066 2
[115] MRI Detecting of coronary artery calcium Private DCNNs 1689 2
[66]

Digital pathology images

H&EWSI Detection of ICOS protein expression in colon cancer Epi700 Detectron2 and U-Net 97 2
[116] H&EWSI Predicts origins for cancers of unknown primary TCGA TOAD 32537 18
[117] H&EWSI Identify the sub-type of renal cell carcinoma TCGA, CPTAC , CAMELYON16 and CAMELYON17 CLAM 3750 3
[118] H&EWSI andWBCs Nuclei instance segmentation GlaS, GRAG, MonuSeg, CPM, andWBC NuClick 3129 7
[59]

Breast image analysis

Mammograms Breast mass segmentation and shape classification DDSM and REUS Hospital cGAN and CNN 851 4
[119] MRI Breast tumors classification BI-RADS Pre-trained CNNs 927 2
[96] Ultrasound Breast tumor segmentation BUS CIA cGAN 413 2
[120] DBT and X-ray Breast mass segmentation DBT U-Net 4047 2
[121]

Cardiac image analysis

MRI Ventricle segmentation RVSC Dilated-Inception Net 48 2
[122] MRI and CT Whole heart segmentation MM-WHS Different CNNs 120 2
[123] MRI Aorta segmentation UK Biobank U-Net with RNN 500 2
[124] MRI and CT Cardiac substructure segmentation MM-WHS cGAN with U-Net 120 2
[125]

Abdominal image analysis

CT Liver tumor segmentation LiTS U-Net 865 2
[126] MRI Diagnosed polycystic kidney disease TEMPO Ensemble U-Net 2400 2
[127] CT and MRI Multi-organ segmentation TCIA and BTCV DenseVNet 90 8
[128] Endoscopic Diagnosis of gastric cancer Zhongshan Hospital ResNet50 993 2
[95]

Dermatology

Dermoscopy Skin lesion segmentation ISBI 2017 and ISIC 2018 SLSNet 6444 2
[129] Dermoscopy Skin lesion classification ISBI 2016, 2017 and ISIC 2018 Pre-trained CNNs 14439 7
[130] Photographs Automated grading of acne vulgaris Private Pre-trained CNNs 474 3
[131] Dermoscopy Classification of six common skin diseases Xiangya-Derm Xy-SkinNet 5660 6

3. APPLICATIONS AND DATASETS
Before the widespread use of deep learning (DL)-based methods, extensive research was carried out using tra-
ditional computer vision (CV)methods, where features were engineered or discovered, extracted from images,
and then used to train supervised machine learning (ML) algorithms [101]. However, it is safe to argue now that
almost all research related to medical image classification, object recognition and medical image segmentation
is currently driven by DL-based methods, especially in the last 10 years [90].

Advances that took place at the algorithmic levels related to DL-based methods and convolutional neural net-
works (CNN) have significantly improved accuracy and have been successfully applied across a wide range of
medical image applications. Typical applications include brain image analysis [102], survival prediction using
brain medical imaging [103], retinal image analysis-based applications [104–106], chest image analysis [55,107,108]

and others. Many of these applications made use of different image modalities, including CT, magnetic reso-
nance imaging (MRI), Ultrasound and X-rays [109].

In addition to the development at the algorithmic level that took place over the past decade, the other key
driving force for the progress in medical image analysis and applications is the availability of datasets in the
public domain. This availability enabled the CV research community to test and evaluate many methods for
solving complex CV tasks related to medical images. In the literature, several datasets for medical image
analysis have been presented based on recent DL methods. These datasets provide a unique opportunity for
the research community to advance the research in solving complex vision tasks in themedical domain. Table 1
lists some common datasets in the different domains (e.g. brain, retinal, chest, breast, etc.) with some details.

4. CHALLENGES
The progress that took place in computer vision (CV) is unprecedented, and various inherently challenging
CV tasks are now considered solved problems. Typical inherent CV challenges include data variation (e.g.
lights, pose), occlusion (overlapping objects in the images/videos), and others. However, despite this significant
progress, there remain challenges that need to be addressed to scale up the use of deep learning (DL)-based
methods across a wider range of applications in themedical domain. In this paper, we argue that many of these
challenges are related to data quality and data availability. However, in the medical domain, some data will
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always need to be gathered opportunistically, so it may not be possible to overcome these challenges through
data gathering alone. These challenges apply to the full range of medical applications, including complex
medical settings such as robotic surgery [11] and comparatively simple settings such as the detection of fever
with thermal cameras. In both of these settings, CV algorithms need to account for the dynamic environment.
In robotic surgery, this includes navigation, movement, object recognition (of deforming objects) and actions.
In other settings, data variability caused by the environment and equipment used to capture the images can
lead to issues. Clearly, data availability and quality play a crucial role in the learning process.

4.1 Data availability and quality
The quality and viability of CVmodels developed through machine learning (ML) often depend directly upon
the quality of available data used to train the models. This is especially important in medical imaging, where
specialist imaging technology is required to capture the images, and expert knowledge is required to select,
annotate and label data. It should be noted that the performance of many DL-based methods relies on large
volumes of images, and in supervised learning settings, these should be fully labelled and annotated.

The annotation of medical images, in particular, continues to be one of the most demanding tasks and requires
long hours ofmedical experts’ time. Despite the latest development in CV, annotatingmedical images as well as
images and videos across other domains is still largely carried out manually, often done by drawing bounding
boxes around the area of interest, or creating a mask manually, so that such data can be used in the training
process. In a complex and dynamic environment, the challenge of collecting and annotating the data (often
collections of videos) is even more demanding, labour-intensive and often expensive. Consider, for example,
a simple task (for medical experts) such as analysing operative videos to detect steps in laparoscopic sleeve
gastrectomy surgery [132], where the authors had to collect and annotate videos, using two experts, capturing
patients’ operations (entire surgery). Although good results were reported, it is practically infeasible to scale
this approach to capture all data variation in such scenarios. Therefore, more work needs to be done in the
area of unsupervised or semi-supervised DL-based methods.

In the medical domain, data must often be captured opportunistically, using equipment, patients and special-
ists as and when they are available. Strictly controlled and consistent conditions specifically for data gathering
purposes are not always possible. This leads to challenges in the generalisabilty of models. For example, in the
field of thermal imaging, even data gathered specifically for the purposes of study exhibits high levels of diver-
sity between datasets [83,133]. A large dataset specifically for febrile identification from thermal images, does not
yet exist [134]. However, a meta-analysis of existing studies into the use of thermal scanners for febrile identifica-
tion demonstrated high levels of diversity between the studies [133], with this partly attributed to differences in
equipment, scanner location, demographics of the study population. This diversity means that models trained
on one dataset might not generalise to other datasets, let alone situations of widespread use. The International
Organization for Standardization has produced a standard specifically for the purpose of mass temperature
scanning for fever detection [135], though some evidence suggests the standard is not yet widely adopted [136].
A complete lack of standardisation in data gathering protocols in some fields will produce diverse but disjoint
datasets, making model generalisation exceptionally difficult.

4.2 Data bias
One of the inherent problems related to CV and ML in general is the data bias or, as commonly known, class-
imbalance problem. Classification with imbalanced class distribution poses a challenge for researchers in the
field of ML [137]. An imbalanced dataset is a common term describing a dataset that has a remarkably unequal
distribution of classes, as depicted in Figure 5. Such a dataset is likely to cause a bias in the learning process
of a ML algorithm. This is because typical learning algorithms are designed to maximize the overall accuracy
in classification regardless of the model’s per-class accuracies. Hence, in an imbalanced dataset, the learning
algorithm will be more compromised for misclassification of minority class instances than majority class ones.
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Figure 5. A dataset with imbalanced class distribution.

This can lead to an undesirable scenario when theminority class accuracy is nil while the overall class accuracy
still reaches over 90% due to a high imbalance ratio of the minority class to theminority class. This high overall
accuracy will be misleading if one is not aware that the predictive model has totally failed to detect anomaly
cases. The problem becomes more concerning when the minority class is the class of interest and has a high
error cost. This situation has been reported in the literature across awide variety of problemdomains, including
medicine [138,139], oil and gas industry [140], finance [141], and banking [142].

In the medical domain, imbalanced datasets are often seen due to the limited availability of samples, generally
patient data, belonging to the group of interest [143]. For example, the data of patients with benign tumoursmay
greatly outnumber the data of cases with malignant tumours, which is a natural phenomenon of many existing
types of tumours that the overwhelming majority of these tumours are benign [144–146]. Predictive analysis
of other diseases such as heart disease, cerebral stroke, Parkinson’s, and epilepsy are also good examples of
imbalanced data classification tasks [143,147,148]. Results achieved from the analysis will be crucial and have a
high impact on society since these are major threats to public health globally. On this account, a number of
researchworks to serve this purpose have been being carried out. Nonetheless, little has been realised about the
issue of disproportional class distribution in the data [138]. This is evidenced in the review of Kalantari et al. [149],
where only 1 out of 71 presented supervised-learning-based approaches for medical application addressed the
class imbalance issue.

This is a problem in the medical domain that is unlikely to be solved by sourcing more data samples. To deal
with imbalanced datasets, data resampling is widely-used [150]. Resampling methods are applied to change
the class distribution in order to mitigate the imbalance effect on the learning algorithm’s performance. Fig-
ure 6a and Figure 6b shows the two main resampling approaches, namely, oversampling and undersampling,
respectively. Oversampling is the practice of synthesising additional samples in the minority class whereas
undersampling is the practice of reducing the number of majority class instances. Algorithm-level solutions,
which involve modifying existing learning algorithms to address the imbalance problem in a dataset, are also
implemented. One main approach of these solutions is to adjust the cost function according to the imbalance
ratio. Others are such as employing ensemble-based methods, one-sided selection, and neural-network-based
solutions. For further discussion of recent methods, the reader is referred to [150].

It should be pointed out, however, that with medical images and medical datasets in general, undersampling
methods may not be a favourable technique, because it often results in an information loss, which may have a
negative impact on the overall accuracy [151].
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(a) (b)

Figure 6. The dataset with (a) oversampling and (b) undersampling applied.

There have been a number of research articles on handling the class imbalance in medical datasets. The ap-
proaches range from simply utilising existing solutions to designing new techniques. However, many works
have focused on tabulated medical data [152–155], which is easier to deal with compared to medical images.

Krawczyk et al. [156] used an existing method that combined ensemble and evolutionary undersampling to
improve image classification of breast cancer malignancy grading. Bria et al. [157] applied an ad hoc designed
cascade of decision trees to handle class imbalance in small lesion detection onmedical images. Recent creation
of methods to address the class balance problem specifically in image and video analysis can be seen in the
following examples: Yuan et al. [158] introduced a regularized ensemble framework of DL for multi-class video
classification of bowel cancer detection; Zhou et al. [159] proposed an imbalanced reward signal to be used in a
reinforcement learning model for medical image classification.

The emerging generative adversarial networks (GANs) have played an important role in data augmentation
in the minority class, especially in CV [160,161]. Qasim et al. [162] presented a new GAN-based method that
generated synthetic images to improve medical image segmentation. Similarly, Rezaei et al. [163] designed new
architectures of GANs for minority class oversampling in Magnetic Resonance Imaging for brain disease diag-
nosis.

As can be seen in the works mentioned above, using complex and advanced techniques seems to be a require-
ment for solving the imbalanced class distribution in CV tasks. This makes class imbalance a very challenging
problem in medical image analysis, which results in limited growth of research in this domain.

4.3 Explainability of computer vision algorithms using medical data
As well as issues in data quality and quantity and the inherent class imbalance within some datasets, there is the
question of trust in the algorithms themselves. There are increasing legal regulations and social responsibilities
for ML models to be explainable (such as [164]). Recent studies have highlighted that the lack of robust expla-
nation capabilities in existing algorithms is a challenge to be resolved before AI can see further widespread
application within the medical domain [165,166]. Within this field, explaining the outcomes of CV algorithms
is challenging in general, but this is exacerbated within medical image analysis due to (1) the variety of stake-
holders involved; and (2) the complexity of data and models to be explained make explaining their outcomes
difficult.

Typically, the need for an explanation is subjective and highly dependent on an individual user’s context [167].
Within the medical domain, there is a broad range of stakeholder, each of whom possesses very different
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requirements and expectations which must be satisfied by an explanation [168]. The list of stakeholders include:
patients; clinicians; care providers; regulatory and/or governance bodies; and algorithm developers, among
others. While there are existing models to link users based upon aspects such as their experience with AI
or domain knowledge [169], in medicine (and similar fields) there is the added complexity of non-overlapping
expertise in the form of clinical specialisations [170]. As a result, ensuring that an explanatory algorithm can
comprehensively meet the explanation needs of all stakeholders is a challenge to be resolved.

Explaining the outcome of CV models is currently achieved in two ways: by augmenting existing black-box
CVmodels with post-hoc algorithms that explain their decision-making; or by developing interpretablemodels
where the decision-making process is reasonably transparent or understandable [171]. In regards to the former
method, most off-the-shelf explanation methods are designed to be problem- and model-agnostic to satisfy a
wide range of use-cases [172,173]. There is then a disconnect between the explanation algorithm and the model
it is designed to explain, and as a result, the explanation provided may not be truly reflective of the actual
decision-making process (i.e. they are not faithful to each other). For example, recent studies suggest that
the widely-used saliency mapping method is not always a reliable source of explanation [171,174]. On the other
hand, explanations derived from interpretable models are guaranteed to be faithful. However, the barrier to
entry is slightly higher due to the complexity of understanding the volume of available information and the
risk of ‘information overload’ [175]. There is growing work on the use of interpretable CV models for medical
imaging [176–178], but the field is still in its infancy.

4.4. Dynamic environment challenges
Much of the published literature related to medical image analysis and understanding and other domains
have used datasets of images and videos that were largely compiled in a controlled environment. This may
include controlling light conditions, movement, quality of the images, the position of the camera and subjects,
equipment used to capture the data and so on. However, in a very dynamic setting, such controls may not be
possible. This still poses a challenge for the CV research community.

A typical controlled environment is a surgical environment and applications related to robotics surgery [49].
However, as controlled as a surgical environment may be in isolation, there may not be any degree of standardi-
sation between separate operating theatres and data gathering equipment. In such scenarios, the performances
and generalisation of the DL models will largely depend on the quality and diversity of the data, regardless of
the CV task. However, it should be noted, that in such a scenario, CV tasks become more complicated, where
accurate object detection and tracking under various conditions become paramount.

The ability to construct a 3D representation out of 2D visual content (video streams and images) continues to
be a challenging problem for the research community. Consider, for example, the need for estimating depth
information for endoscopic surgery images, which is an important task to facilitate navigation in a surgery
setting. In the DL era, if we can obtain large volumes of good quality videos with the corresponding depth
maps, then such a task may be very possible [179]. However, this is quite impossible in a medical setting due to
the dynamic and diverse nature of such an environment. The depth information will be unique to individual
patients, but models which predict the depth information will need to be able to generalise across many dif-
ferent, unique patients. Labelling and annotating the amount of data required to achieve generalisable models
is labour-intensive and often very expensive, as discussed above. Similar to 3D representation, 3D image reg-
istration, as well as learning from different data modalities to improve generalisation of the deep models are
still considered as key challenges in the CV research community.

Another closely related challenge is that the quality of the data collected (images, videos)maybe unintentionally
degraded in an uncontrolled environment, and this, in turn, will have a negative impact on the performance
of any DL model. Existing literature suggests that deep models performance is similar to human performance

http://dx.doi.org/10.20517/ais.2021.15


Elyan et al. Art Int Surg 2022;2:2445 I http://dx.doi.org/10.20517/ais.2021.15          Page 38

on lower quality and distorted images [180].

5. CONCLUSION AND FUTURE DIRECTION
The progress that has taken place in the area of medical image analysis and understanding over the past decade
is considered unprecedented, and can be measured by orders of magnitude. Complex computer vision (CV)
tasks such as classifying images, localising and segmenting areas of interest, and detecting and tracking ob-
jects from video streams became relatively easy to achieve. This development can be largely attributed to
the development that took place at the algorithm levels, especially the development of convolutional neural
networks-based methods, the progress in computing power, and finally the availability of large volumes of
medical images and related data in the public domain. In this paper, we have reviewed and summarised some
of the key technologies and underlying methods behind this progress, and outlined the vast range of medical
applications that have greatly benefited from the latest developments in CV and image processing and analysis.

This paper also outlined key challenges and barriers to scalling up the practical use ofAI-driven solutions across
awider range ofmedical applications. Datawas found to be the fundamental building block in developing these
solutions. There is clear evidence in the literature that with high-quality data, good performance can always
be achieved. However, in reality, preparing the data can be very labour-intensive, time-consuming and often
expensive. Key tasks such as image classification require accurately labelled data, and in the medical domain,
this needs to be carried out by more than one medical expert, to ensure that minimal bias is injected into the
data. Similarly, to build a model that is capable of tracking an object of interest, in a surgery video, enough
videos and images need to be labelled and fully annotated (e.g., drawing a bounding box or a mask around the
region of interest). It can be said that most of these data labelling/annotation tasks are still based on manual or
semi-automated approaches. However, algorithms currently under development have the ability to work from
partially annotated data and intelligently and automatically annotate images successfully.

Even if data is gathered widely and labour-intensive data annotation is carried out perfectly, there may still ex-
ist an inherent class imbalance within the data itself. Recent developments in the literature imply that there are
algorithmic ways to successfully overcome this challenge, too. Future work may include building on existing
data generation methods such as generative adversarial networks (GANs) to produce more diverse datasets
without the need to gather and label/annotate individual samples. GANs have proven to be capable of generat-
ing realistic and diverse images from noise and provide a possible solution to generate data conditioned on a
particular class of interest and solve the class imbalance problem. Another direction that should be considered
is the development of deep learning (DL)-basedmethods so that they become capable of learning from smaller
datasets, which means that efforts to label and annotate datasets can be at least reduced.

There also remains much to be done in terms of ensuring interpretability is built into machine learning models
from the ground up. This will help to engender trust within medical practitioners and patients, and ensure
that accurate, explainable DL models can be developed for immediate widespread deployment in the medical
domain.

Finally, there is an urgent need for experts from the medical and AI domains to work together on an ongoing
basis. This will ensure that expert knowledge remains at the heart of the process in creating accurate, under-
standable and, most importantly, usable CV techniques which can advance medical care globally and take us
into the future.
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