Supplementary Information

Multifunctional nanoporous biocarbon derived from ginger: a promising material for CO₂ capture and supercapacitor

Jefrin M. Davidraj¹, CI Sathish^{1,*}, Vibin Perumalsamy¹, Vishnumaya Narayanan¹, Binodhya Wijerathne², Xiaojiang Yu³, Mark BH Breese³, Muhammad Ibrar Ahmed¹, Jiabao Yi^{1,*}, Ajayan Vinu^{1,*}

¹Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science, and Environment, University Drive, The University of Newcastle, Callaghan, New South Wales 2308, Australia.

²School of Chemistry and Physics, Faculty of Science, Queensland University of Technology, Brisbane, QLD 4000, Australia.

³Singapore Synchrotron Light Source, National University of Singapore, Singapore 119260, Singapore.

Correspondence to: Dr. CI Sathish, Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science, and Environment, University Drive, The University of Newcastle, Callaghan, New South Wales 2308, Australia. E-mail: <u>sathish.ci@newcastle.edu.au;</u> Prof. Jiabao Yi, Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science, and Environment, University Drive, The University of Newcastle, Callaghan, New South Wales 2308, Australia. E-mail: <u>jiabao.yi@newcastle.edu.au;</u> Prof. Ajayan Vinu, Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science, and Environment, University Drive, The University of Newcastle, Callaghan, New South Wales 2308, Australia. E-mail: <u>jiabao.yi@newcastle.edu.au;</u> Prof. Ajayan Vinu, Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science, and Environment, University Drive, The University of Newcastle, Callaghan, New South Wales 2308, Australia. E-mail: <u>jiabao.yi@newcastle.edu.au;</u> Prof. Ajayan Vinu, Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science, and Environment, University Drive, The University of Newcastle, Callaghan, New South Wales 2308, Australia. E-mail: ajayan.vinu@newcastle.edu.au

S.No	Sample	Porous carbo	n synthesis	Sample	Activated carb	Activation		
	Name	Temperature	Ramp/time	Name	Temperature	Ramp/time	GPC:KOH	
		(°C)			(°C)		(g)	
1	GPC2	200	5 °C/2 h	GNBC2	800	5 °C/2 h	1:3	
2	GPC3	300	5 °C/2 h	GNBC3	800	5 °C/2 h	1:3	
3	GPC4	400	5 °C/2 h	GNBC4	800	5 °C/2 h	1:3	
4	GPC5	500	5 °C/2 h	GNBC5	800	5 °C/2 h	1:3	
5	GPC6	600	5 °C/2 h	GNBC6	800	5 °C/2 h	1:3	

Table S1: Synthesis conditions of non-porous carbon and porous activated carbon

Table S2: Textural parameters and X-ray diffraction data of ginger-activated carbon.

S.No	Sample Name	SABET (m ² /g)	t-plot micropore area (m²/g)	Pore volume (cm ³ /g)	Micropore volume (cm ³ /g)	Pore size HK method (nm)	XRD (002) peak position (20)	<i>d-</i> spacing (nm)
1	GNBC2	1426.1	1344.6	0.6638	0.5606	1.33	24.05	0.369
2	GNBC3	1328.5	1245.9	0.6215	0.5255	1.39	24.56	0.362
3	GNBC4	1915.9	1702.5	0.9723	0.7832	1.73	24.69	0.359
4	GNBC5	2140.4	1956.8	1.0438	0.8794	1.61	24.73	0.359
5	GNBC6	2330.6	2224.6	1.1017	0.9953	1.55	23.4	0.381

Table S3: Summary of XPS deconvolution

S.No	Sample Name		C 1s spectra	Composi XPS (tion from At.%)	Composition from EDS (At.%)		
		С-С С-ОН,		COOH	Carbon	Carbon Oxygen		Oxygen
			C-O-C		(C 1s)	(O 1s)	(C K)	(O K)
1	GNBC4	284.3/51.31	285.5/18.54	288.6/30.15	94.38	5.62	96.95	3.05
2	GNBC5	284.3/45.38	285.2/23.01	288.3/31.61	94.29	5.71	96.44	3.56
3	GNBC6	284.2/52.57	285.2/24.02	288.2/23.41	93.24	6.76	95.93	4.07

Table S4: Comparison of specific capacitance of various waste-derived biomass carbon

 samples with GNBC

S.No	Biomass	Surface area (m²/g)	Pore volume (cm ³ /g)	Electrolyte	Specific capacitance (F/g)	Reference
1	N-BPPCF	1357.6	0.765	6M KOH	210.6/0.5 A/g	[1]
2	P-AC	1535.9	-	6M KOH	155/0.5 A/g	[2]
3	Banana Fibers (10% ZnCl ₂)	1097	-	1M Na ₂ SO ₄	74/0.5 A/g	[3]
4	N-APSB	1447.65	0.994	$1 M H_2 SO_4$	200/1 A/g	[4]
5	KOH-CG-700	1622.7	0.83	6M KOH	175/ 1 A/g	[5]
6	DSAC _{1/2}	180	0.093	1M KOH	178/1 A/g	[6]
7	EGS-900	2388.38	-	1 M KOH	150/1A.g	[7]
8	CSC-700	2349.37	-	3M KOH	140 / 1A/g	[8]
9	HDPC	1582		6M KOH	180/ 0.5 A/g	[9]
10	GNBC6	2330.6	1.1017	3M KOH	244/0.5 A/g	This work

N-BPPCF-nitrogen-doped banana peel derived porous carbon, P-AC- peanut shell-derived porous activated carbon, N-APSB – nitrogen-doped peanut shell derived biochar, KOH-CG-700 – KOH activated waste coffee grounds, DSAC_{1/2} – durian shell activated carbon, EGS-900- Eucalyptus globulus seeds derived activated carbon, CSC-700 – corn stalk core derived activated carbon, HDPC – pomelo peel-derived porous carbon.

Sampla	Surface area (m ² /g)	Temperature (°C)	CO2 adsorption (mmol/g)							
Sample			1 bar	2 bar	3 bar	4 bar	5 bar	10 bar	30 bar	
GNBC4	1915.9	0	2.65	4.39	5.83	7.02	8.04	11.92	20.1	
GNBC5	2140.4	0	3.82	6.38	8.4	10.2	11.6	17.3	25.8	
		10	2.98	5.13	6.9	8.39	9.67	14.5	24.1	
		25	2.07	3.66	5.03	6.22	7.28	11.31	20.21	
GNBC6	2330.6	0	4.87	7.52	9.37	10.79	11.9	15.73	21.7	
		10	3.88	6.2	7.88	9.22	10.28	13.8	20.2	
		25	2.65	4.46	4.46	5.9	8.01	11.435	17.74	

Table S5 Summary of CO_2 adsorption

Figure S1: X-ray diffraction patterns of GNBC2 and GNBC3 samples.

Figure S2: N₂ adsorption-desorption isotherms of GNBC2 and GNBC3 samples.

Figure S3: Pore size distribution using Horvath-Kawazoe (HK) method.

Figure S4: SEM images of (a & b) GNBC4, (c & d) GNBC5, and (e & f) GNBC6 samples.

Figure S5: Low and high magnification TEM images of GNBC6 sample.

Figure S6: EDS mapping of (a & b) GNBC4, and (c & d) GNBC5 samples.

Figure S7: XPS C 1s spectral deconvolutions of (a) GNBC4, and (b) GNBC5 samples.

Figure S8: XPS O 1s spectral deconvolutions of (a) GNBC4, (b) GNBC5, & (c) GNBC6 and (d) C K-edge NEXAFS spectra of GNBC samples.

Figure S9: Cyclic voltammetry curves of GNBC samples measured at different current densities (a) GNBC4, (b) GNBC5 and (c) GNBC6.

Figure S10: Charge-discharge profile of GNBC samples at different current densities of 0.5 to 10 A/g (a) GNBC4, (b) GNBC5 and (c) GNBC6.

Figure S11: Three-electrode EIS of GNBC samples.

Figure S12: SEM images of GNBC6 sample (a & b) before and (c & d) after preparing electrode. Table insets on (b) and (d) are the EDS chemical compositions before and after preparing electrodes.

References:

- 1. Liu, B., et al., *Nitrogen-Doped Banana Peel-Derived Porous Carbon Foam as Binder-Free Electrode for Supercapacitors.* Nanomaterials (Basel), 2016. **6**(1).
- 2. Zhang, Y., et al., *Facile synthesis, microstructure and electrochemical performance of peanut shell derived porous activated carbon/Co3O4 composite for hybrid supercapacitors.* Ceramics International, 2022. **48**(23, Part A): p. 34576-34583.
- 3. Subramanian, V., et al., *Supercapacitors from Activated Carbon Derived from Banana Fibers.* The Journal of Physical Chemistry C, 2007. **111**(20): p. 7527-7531.
- 4. Makinde, W.O., et al., *Sulfur and nitrogen co-doping of peanut shell-derived biochar for sustainable supercapacitor applications.* Journal of Alloys and Compounds, 2024. **991**: p. 174452.
- Wang, C.-H., et al., *High-capacitance KOH-activated nitrogen-containing porous carbon* material from waste coffee grounds in supercapacitor. Advanced Powder Technology, 2016.
 27(4): p. 1387-1395.
- 6. Kanjana, K., et al., *Biomass-derived activated carbons with extremely narrow pore size distribution via eco-friendly synthesis for supercapacitor application.* Biomass and Bioenergy, 2021. **153**: p. 106206.
- 7. Rajasekaran, S.J. and V. Raghavan, *Facile synthesis of activated carbon derived from Eucalyptus globulus seed as efficient electrode material for supercapacitors.* Diamond and Related Materials, 2020. **109**: p. 108038.
- 8. Yu, K., et al., *High surface area carbon materials derived from corn stalk core as electrode for supercapacitor.* Diamond and Related Materials, 2018. **88**: p. 18-22.
- 9. Li, J., et al., *Pomelo peel-based N, O-codoped hierarchical porous carbon material for supercapacitor application*. Chemical Physics Letters, 2020. **753**: p. 137597.