# **Energy Materials**

| 1  | Supplementary Material                                                                                                                                                              |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2  | Combining ternary, ionic liquid-based, polymer electrolytes with a single-ion conducting polymer-                                                                                   |
| 3  | based interlayer for lithium metal batteries                                                                                                                                        |
| 4  |                                                                                                                                                                                     |
| 5  | Jiajia Wan <sup>1,2</sup> , Mintao Wan <sup>3,4</sup> , Xu Hou <sup>5</sup> , Francesco Briatico Vangosa <sup>1</sup> , Dominic Bresser <sup>3,4</sup> , Jie Li <sup>2</sup> , Elie |
| 6  | Paillard <sup>2,*</sup>                                                                                                                                                             |
| 7  |                                                                                                                                                                                     |
| 8  | <sup>1</sup> Politecnico di Milano, Chemistry Department, Piazza Leonardo da Vinci 32-20133, Milan.                                                                                 |
| 9  | <sup>2</sup> Politecnico di Milano, Energy Department, via Lambruschini 4-20156, Milan.                                                                                             |
| 10 | <sup>3</sup> Helmholtz Institute Ulm (HIU), Ulm D-89081, Germany.                                                                                                                   |
| 11 | <sup>4</sup> Karlsruhe Institute of Technology (KIT), Karlsruhe D-76021, Germany.                                                                                                   |
| 12 | <sup>5</sup> Uppsala university, Chemistry Department, Uppsala SE-751 21, Sweden.                                                                                                   |
| 13 |                                                                                                                                                                                     |
| 14 | Correspondence to: Prof. Elie Paillard, Energy Department, Politecnico di Milano, via Lambruschini 4-                                                                               |
| 15 | 20156, Milan. E-mail: <u>elieelisee.paillard@polimi.it</u>                                                                                                                          |
| 16 |                                                                                                                                                                                     |
| 17 | ORCID: Elie Paillard(0000-0002-5630-0569)                                                                                                                                           |
| 18 |                                                                                                                                                                                     |
| 19 |                                                                                                                                                                                     |
|    |                                                                                                                                                                                     |



- 21 Supplementary Figure 1. (A) Photo of Li anode after polishing and rolling manually, (B) Photo of Li
- 22 anode after pressing of (A), (C-D) chemical formula of PSTFSILi and PMTFSILi, (E) Li anode after coating
- 23 of with 5wt.% PMTFSILi + 5 wt.% PSTFSILi /PC

24



© The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License

(https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, sharing, adaptation, distribution and reproduction in any medium or





Supplementary Figure 2. (A) Photos of a plated *bare Li* electrode after Li electrodeposition at 0.1 mA cm<sup>-2</sup> until short circuit, (B) corresponding TSPE after immersion in DME to help separate the Li electrode and the TSPE, (C-D) corresponding SEM images of the plated *bare* Li electrode. (E) Photos of a *coated Li* anode after Li electrodeposition at 0.1 mA cm<sup>-2</sup> until Li depletion, (F) corresponding stainless steel spacer with almost no remain of the Li electrodissolved electrode, (G-H) corresponding SEM images of plated *coated* Li anode.

32



33



35

36







- 38 Supplementary Figure 4. Photos of Li|TSPE|Li cell components using bare Li (a-b) and coated Li (c-e)
- after 5 cycles at 0.1 mA cm<sup>-2</sup> with 10h steps at 80 °C. (A) initially plated Li anode, (B) initially stripped Li
- 40 anode, (C) initially plated Li anode, (D) TSPE after immersion into DME and drying, (E) initially stripped

41 Li anode.



- 42
- 43 Supplementary Figure 5. Top view of SEM images of (A) bare Li (B) and coated Li after 5 cycles at
- 44 0.1 mA cm<sup>-2</sup> with 10h steps at 80 °C.

45



© The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, sharing, adaptation, distribution and reproduction in any medium or









- 48
- 49
- 50



© The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License

(https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, sharing, adaptation, distribution and reproduction in any medium or







52 Supplementary Figure 7. Electrochemical performance of LFP|TSPE|Li cells cycling at 0.1C.







57

- 58

59

60

61

62

63

64



© The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License

(https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, sharing, adaptation, distribution and reproduction in any medium or



|         |                       | $R_1/\Omega$ | $R_2/\Omega$ | $R_3/\Omega$ | $R_{total}/\Omega$ |
|---------|-----------------------|--------------|--------------|--------------|--------------------|
|         | Rest 24               | 5.1          | 791.3        | 63.6         | 860.0              |
| Bare Li | 1 <sup>st</sup> cycle | 4.4          | 483.7        | 32.4         | 520.6              |
|         | 5 <sup>th</sup> cycle | 4.6          | 435.9        | 19.8         | 460.3              |
|         | Rest 24               | 4.3          | 295.7        | 129.4        | 429.4              |
| Coated  | 1 <sup>st</sup> cycle | 3.5          | 280.4        | 74.2         | 358.1              |
| 1.11    | 5 <sup>th</sup> cycle | 3.7          | 234.8        | 106.7        | 345.2              |

#### 65 **Supplementary Table 1.** Resistances values obtained from fitting the impedance spectra.

66

#### 67 Supplementary Table 2. Surface atomic concentrations of elements for different Li electrodes.

|                    | С     | 0     | Li    | F    | S    | Ν    | Si   | Cl   |
|--------------------|-------|-------|-------|------|------|------|------|------|
| Pristine bare Li   | 26.4% | 32.0% | 34.0% | -    | -    | -    | 7.6% | -    |
| Pristine coated Li | 41.5% | 24.8% | 18.0% | 4.9% | 2.7% | 2.0% | 5.7% | 0.4% |
| Bare Li-cycled     | 54%   | 18.5% | 21.5% | 4.0% | 0.3% | 0.5% | 0.3% | 0.8% |
| Coated Li -cycled  | 66.8% | 17.1% | 11.1% | 3.4% | 0.6% | 0.3% | 0.4% | 0.4% |

68

### 69 Supplementary Table 3. XPS fitting results of C 1s spectra for samples.

|                    |                    | C-C/C-<br>H/C=C | C-0   | 0-C=0 | CF <sub>x</sub> |
|--------------------|--------------------|-----------------|-------|-------|-----------------|
| Drigting have Li   | Binding energy /eV | 284.8           | 286.7 | 289.2 | -               |
| r fistille bare Li | Content            | 22.2%           | 1.8%  | 2.5%  | -               |
| Dono Li ovolod     | Binding energy /eV | 284.8           | 286.4 | 288.8 | -               |
| Dare LI-cycled     | Content            | 40.5%           | 7.1%  | 6.4%  | -               |
| Pristine coated    | Binding energy /eV | 284.8           | 286.6 | 289.1 | 292.7           |
| Li                 | Content            | 28.0%           | 5.4%  | 6.6%  | 1.6%            |
| Cooted Li evoled   | Binding energy /eV | 284.8           | 286.7 | 288.4 | -               |
| Coaled LI-cycled   | Content            | 46.5%           | 14.4% | 5.9%  | -               |

70

71

72

73



© The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License

(https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, sharing, adaptation, distribution and reproduction in any medium or



|                    |                    | LiO <sub>2</sub> | <b>O-C=O</b> | O-C/O=S |
|--------------------|--------------------|------------------|--------------|---------|
| Dristing horo Li   | Binding energy /eV | 528.6            | 531.6        |         |
| r fistille Dare Li | Content            | 6.0%             | 26.0%        |         |
| Dono Li ovolod     | Binding energy /eV | 528.4            | 531.6        | 533.0   |
| Dare LI-cycleu     | Content            | 1.1%             | 16.2%        | 1.3%    |
| Pristine coated    | Binding energy /eV | -                | 532.0        | 533.0   |
| Li                 | Content            | -                | 19.5%        | 5.2%    |
| Control I i avalad | Binding energy /eV | -                | 531.5        | 533.1   |
| Coateu LI-cycleu   | Content            | -                | 9.0%         | 8.1%    |

## 74 Supplementary Table 4. XPS fitting results of O 1s spectra for samples.

75

#### 76 Supplementary Table 5. XPS fitting results of Li 1s spectra for samples.

|                        |                    | Li <sub>2</sub> O | $Li^+$ |
|------------------------|--------------------|-------------------|--------|
| Drigting have I i      | Binding energy /eV | 53.9              | 55.2   |
| Pristine Dare Li       | Content            | 15.2%             | 18.8%  |
| Dava Li avalad         | Binding energy /eV | 53.8              | 55.2   |
| Bare LI-cycled         | Content            | 4.0%              | 17.5%  |
| <b>Pristine coated</b> | Binding energy /eV | -                 | 55.4   |
| Li                     | Content            | -                 | 18.0%  |
| Control I i prolod     | Binding energy /eV | -                 | 55.4   |
| Coaled LI-cycled       | Content            | -                 | 11.1%  |

77

78



© The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License

(https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, sharing, adaptation, distribution and reproduction in any medium or



# 79 Supplementary Table 6. XPS fitting results of F 1s spectra for samples.

|                     |                    | LiF   | CF <sub>x</sub> |
|---------------------|--------------------|-------|-----------------|
| Dristing have I i   | Binding energy /eV | -     | -               |
| I IIStille Dale Li  | Content            | -     | -               |
| Poro Li avalad      | Binding energy /eV | 685.0 | 688.2           |
| Dare Li-cycleu      | Content            | 3.2%  | 0.8%            |
| Pristine coated     | Binding energy /eV | 684.9 | 688.6           |
| Li                  | Content            | 1.5%  | 3.4%            |
| Control I ; availad | Binding energy /eV | 684.9 | -               |
| Coated LI-cycled    | Content            | 3.4%  |                 |
|                     |                    |       |                 |

80



© The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, sharing, adaptation, distribution and reproduction in any medium or

