
Ernest et al. Complex Eng Syst 2023;3:4
DOI: 10.20517/ces.2022.54

Complex Engineering
Systems

Research Article Open Access

Formal verification of Fuzzy-based XAI for Strategic
Combat Game

Nicholas Ernest, Timothy Arnett, Zachariah Phillips

Thales Avionics Inc., Cincinnati, OH 45242, USA.

Correspondence to: Dr. Nicholas Ernest, Thales Avionics Inc., 4358 Glendale-Milford Rd., Cincinnati, OH 45242, USA. E-mail:
nick.ernest@us.thalesgroup.com

How to cite this article: Ernest N, Arnett T, Phillips Z. Formal verification of Fuzzy-based XAI for Strategic Combat Game. Complex
Eng Syst 2023;3:4. http://dx.doi.org/10.20517/ces.2022.54

Received: 11 Dec 2022 First Decision: 31 Jan 2023 Revised: 13Mar 2023 Accepted: 14Mar 2023 Published: 30Mar 2023

Academic Editor: Hamid Reza Karimi Copy Editor: Yin Han Production Editor: Yin Han

Abstract
Explainable AI is a topic at the forefront of the field currently for reasons involving human trust in AI, correctness,
auditing, knowledge transfer, and regulation. AI that is developed with reinforcement learning (RL) is especially of
interest due to the non-transparency of what was learned from the environment. RL AI systems have been shown to
be ”brittle” with respect to the conditions it can safely operate in, and therefore ways to show correctness regardless
of input values are of key interest. One way to show correctness is to verify the system using FormalMethods, known
as Formal Verification. These methods are valuable, but costly and difficult to implement, leading most to instead
favor other methodologies for verification that may be less rigorous, but more easily implemented. In this work,
we show methods for development of an RL AI system for aspects of the strategic combat game Starcraft 2 that is
performant, explainable, and formally verifiable. The resulting system performs very well on example scenarios while
retaining explainability of its actions to a human operator or designer. In addition, it is shown to adhere to formal
safety specifications about its behavior.

Keywords: Explainable AI, reinforcement learning, formal verification, starcraft, genetic algorithm, fuzzy logic, ge-
netic fuzzy trees, formal methods

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0
International License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, shar-

ing, adaptation, distribution and reproduction in any medium or format, for any purpose, even commercially, as long as you
give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate
if changes were made.

www.comengsys.com

https://creativecommons.org/licenses/by/4.0/
www.comengsys.com
ttp://crossmark.crossref.org/dialog/?doi=10.20517/ces.2022.54&domain=pdf
OAE
图章

OAE
图章

Page 2 of 22 Ernest et al. Complex Eng Syst 2023;3:4 I http://dx.doi.org/10.20517/ces.2022.54

1. INTRODUCTION
Artificial intelligence (AI) applications in reinforcement learning (RL) have garnered significant attention in
recent years [1,2] due to their wide ranging applicability to previously intractable problems. In particular, the
success of DeepMind’s AlphaGo system [3] ignited a revitalization of research and attention in the area, specif-
ically with the introduction of new techniques combining RL with deep neural networks (DNN), known as
Deep Reinforcement Learning (DRL). However, while improvements within the overarching field of RL and
DRL continue to increase the scalability and performance of these approaches, verification and explainability
efforts have not received comparable attention. There have been efforts to take highly performant DRL so-
lutions and increase explainability and trustworthiness ex post facto. An example of this was DARPA’s XAI
program, introduced to study and identify the importance and usage of explainability in AI [4]. Their conclu-
sions were that many DRL solutions were brittle, unverifiable, and opaque to human designers/operators that
may want to audit, verify, or extract knowledge from what the agent learned.

Fuzzy inference systems (FIS), function approximators that utilize Fuzzy Logic and inference rules to map
inputs to outputs [5], have several properties that lend themselves towards XAI, but have other potential draw-
backs compared to DNNs, namely scalability. Fuzzy Logic-based systems have long been used in control
system development due to their approximation capabilities [6], ease of implementation from expert knowl-
edge [7], robustness to input noise [8], explainability and transparency to humans [9], and ability to be formally
verified [10]. However, scalability issues with respect to the number of inputs limited the potential applications.
Fuzzy trees were introduced in 2015 [11] in order to mitigate scalability issues while also retaining explainability
and approximation capabilities by combining multiple FISs arranged in a network or tree-like structure.

Genetic Algorithms are a class of gradient-free search algorithms that evolve solutions by mutation and re-
combination over a number of generations by evaluating their fitness against one or more metrics in a fitness
function. GAs have long been used to great effect in many areas, but also in a large body of work related to
optimization of FIS parameters [12]. Combining Fuzzy Trees with Genetic Algorithms led to Genetic Fuzzy
Trees (GFTs) [11], a powerful combination that uses an explainable and formally verifiable function approxima-
tor with a gradient-free optimizer and has been applied to several complex use cases in both supervised [13]

and reinforcement learning domains [14]. Thales’s GFT software toolkit includes both a Fuzzy Logic engine,
Psion, and a state-of-the-art Genetic Algorithm-based optimization tool, EVE [15]. Its strengths include ease
of utilization for finding low wall-time solutions and wide applicability due to the nature of gradient-free op-
timization. Perhaps the most notable prior use-case was the Alpha system [14], a super-human AI for beyond
visual range air-to-air engagements within high-fidelity simulations against expert human pilots [14].

Another benefit of GFTs is that they can be verified using Formal Methods. Formal Methods are often defined
as ”mathematically rigorous techniques for the development, specification, and verification of systems.” Many
methods and techniques fall under the umbrella of Formal Methods including the boolean satisfiability prob-
lem (SAT) [16], satisfiability modulo theories (SMT), model checking, theorem proving, reachability analysis,
etc. Formal Verification is the utilization of Formal Methods towards verifying the correctness of a system.
In general, verification is about confidence in the correctness of a system, and formal verification extends
traditional verification methods (e.g., Monte Carlo evaluation) towards definitive proofs of correctness. The
adoption of formal verification has been slow in the world of AI andMLmainly due to the difficulty in proving
properties of DNNs as their scale continues to increase.

In this work, an AI agent using the GFT construct is created and then trained using reinforcement learning
to play specific scenarios within StarCraft 2. Note that this study does not analyze an entire standard Starcraft
2 match. Instead, the focus will be on specific control applications with a focus on explainability and formal
verifiability, though an entire standard game of Starcraft 2 could certainly be studied through utilization of the
GFT approach. This study is not aimed towards demonstrating a performance disparity between Fuzzy logic-

http://dx.doi.org/10.20517/ces.2022.54

Ernest et al. Complex Eng Syst 2023;3:4 I http://dx.doi.org/10.20517/ces.2022.54 Page 3 of 22

based AI approaches and any other methodology, but rather to demonstrate how these systems can be created
in a way that maintains explainability and formal verifiability. These capabilities are highly desired, and often
required, formission/safety-critical applications. Starcraft 2 is used because it is a commonly used environment
inmodern RL research, it allows for creation of publicly-shareable mission/safety-critical use-cases, and allows
for extension of this work for comparisons with other highly performant RL methodologies.

The GFT is initialized with a structure, given initial parameter values where applicable, and then trained by
interaction in the game across a training set of episodes. The structure of the GFT is such that output actions
can be explained by extracting the activated rules and membership functions. Specifications about the sys-
tem’s behavior are then created and verified against the system using Formal Methods [17]. In cases where the
specifications are violated, counterexamples are returned showing where the violations occur, and then cor-
rections are performed. The corrected systems are then verified to not violate specifications showing definitive
correctness with respect to the developed behavioral specifications.

Four specifications have been developed for this study, which is by no means an exhaustive potential set. This
work will demonstrate the learning capability to solve a particularly difficult sort of engagement, demonstrate
the potential explainability possibilities, and prove adherence to a set of relevant specifications. The primary
objective for this study is to showcase an example of a fuzzy logic based AI system which can be formally
verified to adhere to safety specifications within a mission/safety-critical scenario.

The structure of the remainder of the paper is as follows. Section 2 details the methods used to create, train,
and verify a GFT for specific scenarios in SC2. Section 3 shows the results including RL training, verification
against specifications (and generated counterexamples), and results after modification to ensure specification
adherence. Section 4 discusses the results in depth and offers thoughts on extensions and future work. Finally,
Section 5 gives a concise conclusion on the work, results, and impact of this study.

2. METHODS
This section describes both the general background info and setup of a GFT solution for training in a RL
context followed by the specific implementation for the SC2 use case.

2.1. General GFT workflow
The typical workflow for creating a GFT AI solution involves creating a GFT-based agent with a tree structure
that is purposefully designed such that it is explainable and formally verifiable. The performance of the agent
is evaluated through a number of different scenarios for training, testing, and validation. The system is then
formally verified against specifications about its behavior. Explainability aspects are used both as an auditing
tool when evaluating counterexamples from the formal verification process, and also as a knowledge transfer
device to allow human observation and understanding of what the agent learned during the RL process.

GFTs are most often created using a combination of initial expert knowledge and machine learning using
gradient-free optimization. Thales’s GFT toolkit is a commercial software package that includes both a Fuzzy
Inference System (FIS) engine named Psion and a Genetic Algorithm optimization engine, EVE, which com-
bined represent the best software implementation of Genetic Fuzzy Trees available today [15]. An example of a
notional GFT structure is shown in Figure 1.

TheGFT is then trained using EVE in whatever context the problem is framed (supervised, reinforcment) until
termination criteria are met. These termination criteria can include performance metrics, time, number of
generations/epochs, stagnation measures, etc. Once this round of training is complete, verification can occur
on the GFT (fixed parameters) along with SME/developer auditing and manual changes. Counterexamples

http://dx.doi.org/10.20517/ces.2022.54

Page 4 of 22 Ernest et al. Complex Eng Syst 2023;3:4 I http://dx.doi.org/10.20517/ces.2022.54

Figure 1. Notional figure of a GFT structure, with a plurality of FIS nodes.

from the verification process can be used to directly change aspects of the GFT, or inform the ML process in
the form of constraints, reward modifications, etc. The GFT can then be reinitialized and trained using the
ML process again. This process iterates until system requirements are met.

2.1.1. Initial GFT structure
The GFT structure is primarily defined through the input/output flow of each FIS node within the system.
Although a GFT structure can be initialized randomly and optimized through EVE, it is often advantageous
to initialize using domain knowledge where possible. This is beneficial for two main reasons:

1. It takes advantage of domain knowledge as an initial seeding to use as a starting point. This provides a
valuable baseline that can then be expanded/improved upon

2. Depending on methods used, can preserve semantic relationships/importance in the structure itself due to
the linguistic nature of FISs and the connections between them in the tree

Note that these are not strictly necessary for explainability or performance, but often lead to shorter project
development times and improve transparency/understandability [18]. Assuming amanual structure is provided,
the learning agent can be left to optimize all of the Membership Functions (MFs) and Rule-Bases (RBs) of the
FISs, either holistically or individually.

2.1.2. GFT RL training
Due to the gradient-free algorithms used for the training process, the methods used for both supervised and
reinforcement learning problems are largely the same with the difference being in the formulation of the fitness
function. Where in a supervised learning problem the fitness function may be a measure of the fit of the
function to the underlying data (LMS, cross entropy, etc.), in RL use cases the fitness is often a measure of how
well the agent performed in one or more simulated episodes, or scenarios. The resulting fitness score is used

http://dx.doi.org/10.20517/ces.2022.54

Ernest et al. Complex Eng Syst 2023;3:4 I http://dx.doi.org/10.20517/ces.2022.54 Page 5 of 22

to evolve the population of candidate GFT solutions until termination criteria are met.

After some amount of training, a fixed configuration for the GFT architecture is evaluated, tested, and verified.
Additional numerical testing is often performed along with unit tests, formal verification, and human inspec-
tion and correction. If counterexamples to formal specifications are found, they are often mitigated through
direct designer input, or added to the RL process in such a way to penalize GFT configurations in the GA
population that have such violations. This iterative process continues until adherence to all specifications and
requirements is achieved and performance metrics are met.

2.1.3. Formal verification
As mentioned in Section 2.1.2, the process for verifying a GFT involves taking a GFT with a particular con-
figuration (fixed structure, parameters, etc.) and evaluating it against formal specifications about its behavior.
These specifications are often derived from system requirements, but can also be created from sources such as
numeral/simulation-based test results, rules of engagement or other high level behavioral constraints, certifi-
cation standard criteria, etc. The specifications are then translated from natural language to a formal language
using mathematical logic in order to be encoded for formal methods analysis. The formal languages used
depend on the necessary expressiveness of the language based on the specification itself. Some of these lan-
guages include Propositional Logic, First Order Logic (FOL), and temporal logics such as Linear Temporal
Logic, Computational Tree Logic, etc. Many others could be used depending on the use case and formulation
of the specifications and models, and Thales GFTs have been implemented with a number of these methods,
most commonly FOL and LTL.

Models of the GFT are then translated to formal verification tools such as SMT solvers andmodel checkers, and
then checked against the specifications. If counterexamples are found, modification of the GFT is performed
by the designer and/or the ML process. The tools used in this work are the state-of-the-art SMT solver Z3 [19]

along with the infinite state model checker jKIND [20].

2.2. Starcraft 2 GFT development
The development process for the SC2 use case is largely the same as the general process described in Section
2.1. An initial GFT is constructed for parts of agent control based on expert knowledge, it is trained using
gradient-free RL in the SC2 environment, formal verification is performed and modifications are made based
on counterexamples generated, and then iterated until a performant, specification compliant GFT is found.

2.2.1. StarCraft 2 information
As this study is focusing on specific scenarios for demonstrating the explainability and formal verifiability of
this capability, we only consider four different unit types within this context:

• Marine: A basic human infantry unit which can fire a ranged volley at a certain frequency. Has an advanced
technique Starcraft 2 players can utilize in which if they perform rapid movement commands between
volleys, they can both re-position slightly as well as fire faster, outputting more damage per second.

• Medivac: A human air vehicle which can utilize a limited resource pool to support ground biological units,
such as marines, by healing their durability at a set amount per second. Can also be utilized to transport
units, though this capability will not be utilized within the context of this study.

• Siege Tank: A human ground vehicle, which can move and attack ground units normally. In ”siege mode”
the tank becomes stationary, but can attack further and do increased damage per shot, but cannot attack
units within a short range of it. Most interestingly for this study, this unit is one of the few that does ”splash
damage” that includes friendly units. That is, friendly units near the target will take damage within a certain
range. As such, the siege tanks within this study will always be in ”siege mode”.

• Zergling: An alien (Zerg) insect unit that is a fast melee attacker. Can not attack air units but can quickly
overwhelm ground units. Will serve as the hostile unit type for this study.

http://dx.doi.org/10.20517/ces.2022.54

Page 6 of 22 Ernest et al. Complex Eng Syst 2023;3:4 I http://dx.doi.org/10.20517/ces.2022.54

Figure 2. Primary scenario to be utilized for training and analysis. Consists of a stronger zergling force within close range of the human
force. Pictured (1) siege tank, (2) medivac, (3) marines, (4) zerglings.

A primary training scenario has been developed which will be utilized for reinforcement learning for a difficult
engagement made up of these units. A plurality of other engagements have been developed for testing and
formal verification.

From a raw performance perspective, the mission shown in Figure 2 is the primary performance objective to
complete. This mission has 16 zerglings that make up the hostile forces as well as 6 marines, 1 medivac, and 1
siege tank on the friendly team.

This mission is such that if the in-game controllers for both forces behave natively, the human ground forces
lose with on average at least 7 of the zerglings still alive. This mission is feasible for a human to complete with
some forces remaining, but is very difficult and requires advanced tactics within the game. Despite expertise
in the game, the standard ending with manual full focus on controlling the human forces has notable losses.

2.2.2. Tree structure creation
A GFT has been created to control these 3 specific types of human units, both individually or as an entire
force. The general approach for these sorts of control problems is to generate an entire action plan each time
step of the environment. As such, the GFT utilized within this study will provide significantly higher action
throughput than what would be maintained by a human.

Through subject matter expertise within this type of engagement, we understand that there are a few key control
decisions that need to be made each time step:

• TheMedivac should make healing decisions that efficiently utilize its resources and keeps biological units
alive as best as possible.

• TheMarinesmust be intelligent in how they spread their fire against the incoming group of targets, focusing
fire to eliminate enemy units efficiently.

• TheMarines optimally will utilize the ”stutter step” strategy, both to increase their effective attack speed as
well as to potentially minimize the total incoming damage from the enemy melee units.

• The Siege Tank is a powerful unit and should attempt to get as many effective shots off, while minimizing
the harm it does to friendly units.

http://dx.doi.org/10.20517/ces.2022.54

Ernest et al. Complex Eng Syst 2023;3:4 I http://dx.doi.org/10.20517/ces.2022.54 Page 7 of 22

Figure 3. Three standalone FISs for Marine Movement Control, Marine Firing Control, and Medivac Healing Control utilized within the
studied model. Normalized inputs in blue, FISs in red, and normalized outputs in green.

A relatively simple FIS structure can accommodate these considerations, with all but the Siege Tank control
defined as an output of a single FIS with minimal additional algorithmic work. In Figure 3 these individual
FIS nodes are displayed, each being 2-input Mamdani FISs [21].

Specifically, the Marine Stutter Step Movement control will define a relative movement direction to threats
based upon both the marines current health, as well as its incoming damage rate from hostiles. The Marine
Firing control has a FIS which outputs a bid, from 0% to 100% to select a certain hostile target at every time
a shot is available. The potential hostile target with the highest bid is then selected for the marine to attack.
This bidding FIS takes in the normalized health of a potential target, as well as the relative quantity of already
assigned attacks against this target. The medivac Healing control utilizes a similar approach, considering each
friendly unit it can heal and selecting to heal the unit with its highest priority. This priority being determined
based upon the normalized health of each marine, and its relative incoming damage rate.

The control for the siege tank’s firing logic is more complex and therefore is made up of 3 FIS nodes, shown
in Figure 4. The approach utilized for this structure is to make our decisions considering how effective a shot
would be against a selected unit, as well as how safe that shot would be to nearby friendly units. Effectiveness
is determined by two main items; zerglings are low health units and the siege tank can easily waste some of
its damage potential by targeting a very damaged zergling. However, if the very damaged potential target is in
the middle of a group of hostiles, selecting that target may still be ideal due to the splash damage. Shot safety
is essentially the opposite, now considering splash damage a shot would do to any friendlies, combined with
the lowest health of the friendly units that would be affected by said splash damage. A differentiation between
the marines’ fire control is that the marines should always attack as often as they can in this engagement due
to the fact they only damage their hostile target. The fire control for the Siege Tank will select the hostile target
to fire at among all hostiles it considers, but only if that maximum fire bid is above 50%, otherwise it would
opt to not fire.

http://dx.doi.org/10.20517/ces.2022.54

Page 8 of 22 Ernest et al. Complex Eng Syst 2023;3:4 I http://dx.doi.org/10.20517/ces.2022.54

Figure 4. 3-FIS tree for Tank Firing Control utilized within the studied model.

Figure 5. MFs for Marine Firing FIS. Input 1 corresponds to normalized potential target health with 5 MFs for ”Very Low, Low, Moderate,
High, Very High”. Input 2 corresponds to current number of assigned friendly attackers already through this bidding cycle with 4 MFs for
”None, Some, Many, All”.

2.2.3. Explainability
After creating the tree structure, individual FISs are constructed using expert knowledge where available in
most cases. Often this will be in the form of the number of MFs which will be utilized in each FIS; often
leaving the specific distribution of said MFs across the input space to the machine learning process.

Explainability can be analyzed through a plethora of manners; the structure of the FISs created for this study
were designed to optimize the general explainability and interpretability of the system alongside raw perfor-
mance. As an example, the input MF sets for the Marine Firing FIS are shown in Figure 5.

A variety of approaches can be utilized to interpret the membership functions and provide explainability, but
one of the simplest approaches would be to report or display the most active membership function for each
input, corresponding with its rules. This represents the membership function with the largest impact on the
output. This can essentially be compared to Shapley Values, a popular explainability metric utilized across
multiple RL approaches [22,23]. In general approaches, these values enable a determination of themost impactful
variables leading to a particular output. Through the membership functions of a given FIS, this is innately
provided. Due to the fact that all systemvariables have the potential to be humanunderstandable termswithin a
fuzzy based system such as the GFT, there is further intrinsic value within this approach if the GFT is properly
designed. Note that explainability is not inherently granted through the utilization of fuzzy systems; rather
fuzzy logic is a construct in which systems that are highly explainable can be developed.

http://dx.doi.org/10.20517/ces.2022.54

Ernest et al. Complex Eng Syst 2023;3:4 I http://dx.doi.org/10.20517/ces.2022.54 Page 9 of 22

For example, an input combination of 0.04 normalized target health, and 0.01 assigned attackers with its re-
sultant output can be examined, and an explanation structure can be generated from membership function
and rule labels: ”Bid output is Very High because target health is Very Low and assigned attackers is None”.
For more extensive fuzzy tree structures, this explanation can be repeated across subsequent cascaded FISs
allowing for the creation of a linguistic explanation of the entire decision process. This form of explainability
and transparency will be heavily utilized during the formal verification process as manual corrections to the
post-training model will be performed if any specifications are found to not be adhered to via formal methods.
This requires direct changing of the code of the model at all levels, not just the input or output layers. Holistic
understanding of any modifications made throughout this process are critical for any potential deployment of
the system post-modification.

2.2.4. Reinforcement learning
The standard RL process for a GFT is to first create a portfolio of training scenarios that each individual in
the GA population is evaluated over. This model was created through utilization of an open source Python
package for interfacing with SC2 such that constructive runs through these scenarios is possible [24]. Within
this study a single mission portfolio is utilized to highlight the formal verification processes, but for most
applications a portfolio containing multiple holistic scenarios as well as specific training sub-problems would
be included [11,14]

The manner in which the performance will be evaluated must also be defined through the requisite Fitness
Function for the GA. The fitness function utilized within this study is found in Equation 1.

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = (𝑀𝑎𝑟𝑖𝑛𝑒𝑠𝐴𝑙𝑖𝑣𝑒 ∗ 25.0) + 𝐹𝑟𝑖𝑒𝑛𝑑𝑙𝑦𝐻𝑃𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 − 𝐻𝑜𝑠𝑡𝑖𝑙𝑒𝐻𝑃𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 − (𝑇𝑖𝑚𝑒𝑠𝑡𝑒𝑝𝑠/100.0)
(1)

The magnitude range of this fitness function is not critical within EVE, but rather the ability for the evolution-
ary process to differentiate relative fitnesses between potential solutions, or chromosomes, in a manner that
thoroughly rewards good behavior and punishes bad. With this example, the terms specifically are a flat 50
point reward for every marine alive at the end of the scenario. This is then added to the summation of the
total friendly health remaining, including that of the siege tank, which has a notably higher health pool than
marines. This is subtracted from the hostile force health pool remaining. Finally, there is a slight penalty for
the number of timesteps it takes to complete the scenario, as if all other parameters have reached optimality,
ideally the solution executes quickly in case additional threats would be inbound to the force. This function
is able to be iterated over in future work, but serves as a good basis for the GA to evolve the population of
chromosomes.

There is an additional complexity with this particular problem due to the nature of Starcraft 2 and this training
setup; non-deterministic fitness evaluations. As the fitness value given to any chromosome within the popu-
lation will drastically affect both its probability for breeding as well as the relative worth of potential future
chromosomes, the ability for a good chromosome to be ”unlucky” and a bad one to be ”lucky” during their
respective evaluations can be damaging to the effectiveness of an evolutionary system. There are mitigating
methods, such as evaluating the scenarios, or portions of them, multiple times. Within this study, each chro-
mosomewill be evaluated a total of three times, with the worst fitness of those three being the actual fitness that
is assigned, to easily mitigate the worst case risk at the expense of computational efficiency of each generation’s
evaluation.

http://dx.doi.org/10.20517/ces.2022.54

Page 10 of 22 Ernest et al. Complex Eng Syst 2023;3:4 I http://dx.doi.org/10.20517/ces.2022.54

2.2.5. Specification identification and development
One of the most difficult, and important, aspects of formal verification is specification identification and de-
velopment. Most often, these specifications come directly from system requirements. However, they can also
come from other sources such as certification criteria and standards, external regulations such as Rules of En-
gagement (RoE), and simulation and testing results. In this work, the specifications come from expert knowl-
edge on desired system behavior with respect to performance and safety of actions taken by the AI. Specifically,
that the AI will not take certain actions if unacceptable damage or losses will occur to friendly forces.

Different types of specifications are created based on the FISs that are affected, the needed expressiveness of
formal languages in which they will be translated, and the tools available for verifying the systems. For this
study, four safety specifications were developed. Safety, in this context, refers to behavior such that nothing bad
ever happens, where ”bad” is defined as an undesirable set of system states. Some would help guarantee not
only safe, but also ideal behavior from a performance perspective. However, other safety specifications solely
focus on desired safety qualities at the expense of raw fitness performance.

These specifications, in natural language, are as follows:

• MedivacHealing Spec: If amarine’s health is very high and themarine is not under attack, its corresponding
healing bid must be very low;

• Marine Firing Spec: If a separate friendly marine has already bid to attack a target whose health is very low,
than a marine’s fire bid on that target must be very low;

• Tank Firing Spec: If a friendly unit would take splash damage from a tank shot and the lowest health
friendly in splash range is between very low and low health, only fire at the target if it would do very high
damage to the enemy;

• Tank Conservative Firing Spec: Never cause splash damage to any friendly unit, regardless of their health.

Through setting the values to the corresponding terms utilized within these specifications to that of our MFs,
we can quite simply apply these specifications to a trained Fuzzy Tree through the formal verification tools with
the Psion fuzzy logic package. If a counterexample is found where the specification does not hold, typically
the designer must either change the spec, or as we will limit this study to, modify the MFs and/or RBs of the
associated FISs.

3. RESULTS
3.1. Reinforcement learning
EVE was instantiated to have a relatively small population, 60 chromosomes, each defining a set of MFs and
RBs for all seven FISs. The training process was run for 50 generations, each chromosome being evaluated
over three scenarios per generation. Thus, this system was trained over 9,000 Starcraft 2 engagements, which
was sufficient in this case to reach high performance.

Presented in Figure 6 is a plot showing the best, worst, and mean chromosome fitness within the popula-
tion of 60 at each generation. Additionally, the running best chromosome’s fitness for each generation is
displayed. Generally with the fitness function utilized in this system, if the chromosome successfully com-
pleted its mission, it would score at least quite close to a positive number. A score of 389.49 was found for the
best chromosome thus far. The breakdown of this fitness value is shown in Table 1.

EVE has a heavy focus onmaintaining diversity, and therefore especially with a generally smaller population, it
is not surprising to see that during each generation theworst chromosomewas not able to successfully complete
this difficult mission. The distribution between best, worst, and mean is at least one sign of a healthily diverse
population throughout the generations. This can help prevent stagnation and ensure continued improvements.

http://dx.doi.org/10.20517/ces.2022.54

Ernest et al. Complex Eng Syst 2023;3:4 I http://dx.doi.org/10.20517/ces.2022.54 Page 11 of 22

Table 1. Individual Components that made up best chromosome fitness of 389.49.

Fitness Component Value
Marines Alive (x25) 100.0
Total Friendly Health Remaining 292.0
Total Hostile Health Remaining 0.0
Timestep Penalty (-Timestep/100.0) -2.51
Total 389.49

Figure 6. Generational and cumulative fitness values of Genetic Algorithm population.

Figure 7. Frame captures 1 (Left) and 2 (Right) of the mission depicting the evaluation of the best chromosome.

In Figure 7 there are 2 frames of the performance displayed. It is a very active mission, with over 70 actions
per second executed by this particular AI model, equating to around 4,200 actions per minute for the roughly
5-9 seconds this mission will last. Obviously this is quite higher than even expert humans would be able to
maintain, but again following humanistic restrictions is not a focus of this particular study. There is non-
determinism, but the problem typically ends with a few of the marines having been defeated, in this case there
were two defeated marines.

Additional training and and increasing the size of the training portfolio would likely lead to greater perfor-
mance, but for the purposes of this formal verification study, the resultant chromosome is sufficient. It is high

http://dx.doi.org/10.20517/ces.2022.54

Page 12 of 22 Ernest et al. Complex Eng Syst 2023;3:4 I http://dx.doi.org/10.20517/ces.2022.54

Figure 8. Single FIS variant for siege tank control.

Figure 9. Single FIS variant for all control actions.

performance but will likely have some edge cases that violate the specifications.

3.1.1 Reinforcement learning comparison
Two additional fuzzy systems were developed for the same scenario as a learning performance comparison
to the above system. The first comparative system utilized is quite similar to the study system, with the sole
difference being that instead of utilizing three separate FISs for control of the siege tank’s targeting, this portion
of the AI is combined into a single 4-input FIS. The revised diagram is seen in Figure 8.

As five MFs are utilized per input, a full fuzzy rule-base of the original system for siege tank control utilized
within this study has 75 rules, 25 rules for each of the three FISs seen in Figure 4. This modified variant has
54, or 625, total rules. This change in search space size is significant in terms of total chromosome size, but
chromosomes of this size are anticipated to be well within the reasonable scope of the genetic algorithm utilized
herein.

Note that the performance of the original system is bounded above by the variant in Figure 8, as any resultant
control surface of the original system can be developed within this variant, as can others. The same is true
compared to both of these systems for a second variant in which the entirety of the fuzzy AI is encompassed by
a single 10-input, 4-output FIS. While the performance ceiling of the system shown in Figure 9 is the same, or
higher, as the other variants, the anticipated performance through the same RL process is significantly worse
due to an extremely large fuzzy rule-base.

While the original system utilizes a total of 150 fuzzy rules, the single-FIS variant would have 4 ∗ 510 or

http://dx.doi.org/10.20517/ces.2022.54

Ernest et al. Complex Eng Syst 2023;3:4 I http://dx.doi.org/10.20517/ces.2022.54 Page 13 of 22

39,062,500 rules. During the RL comparison process, the compute system utilized however had 32 GB of
RAM, an insufficient amount to perform with a chromosome defining a rule-base of this magnitude. How-
ever, if this was reduced to 4 MFs per input, making the rule-base contain 4 ∗410, or 4,194,304 total rules, then
32 GB of RAM was sufficient.

The RL process for these two variants was exactly the same as before, with a total of 60 chromosomes trained
over 50 generations. The maximum fitness found by generation for each of the systems is displayed in Figure
10. As anticipated, the 10-input 4-output variant had significantly worse performance than the original system,
though improvements were able tobe made throughout the RL process. Though the performance ceiling of the
original system is again bounded above by this variant’s, the amount of RL that would be necessary to surpass
the original’s performance is likely prohibitive.

Alternatively, the performance of the variant that solely combined the siege tank’s control into a single FIS
performed favorably compared to the study’s original system. As the genetic process is non-deterministic, and
the total number of fuzzy rules is still relatively small, the fact that the initial generation’s performance was
superior than the original study’s is well within expected range. While additional runs of the RL process would
create different results, the increased granularity of this variant as compared to the study’s original system
can be explained through the increase in the search space size. For the majority of this small, 50-generation
process, the original system has a higher maximum fitness, though the variant does ultimately end with a
higher performing fitness by the end of the run.

While this is a very small GFT system, this comparison demonstrates trade-off comparisons between increased
number of FISs (and thus, less overall rules) and the potential effect on RL performance. Though the single-
FIS for siege tank control variant performed slightly better, it would be more difficult to formally verify, and
overall has a more complex challenge for explainability as compared to the original system. For the remainder
of the study, the original GFT architecture will be utilized.

3.2. Formal verification
3.2.1 Safety specification 1
Again, our first specification, theMedivac Healing Spec, states ”If a marine’s health is very high and the marine
is not under attack, its corresponding healing bid must be very low”. Although simple, adherence to this
specification is desired in all cases. We can represent this in a numerical form by utilizing the points of our
MFs with maximum value for each linguistic term, as shown in Equation 2. This is then translated to Linear
Temporal Logic (LTL) as shown in Equation 3.

𝑆𝑝𝑒𝑐1 =If (𝑀𝑎𝑟𝑖𝑛𝑒𝐻𝑒𝑎𝑙𝑡ℎ > 0.75) and (𝑀𝑎𝑟𝑖𝑛𝑒𝐷𝑎𝑚𝑎𝑔𝑒𝑅𝑎𝑡𝑒 = 0.0)
then (𝐻𝑒𝑎𝑙𝐵𝑖𝑑 < 0.25)

(2)

𝜑1 =□((𝑀𝑎𝑟𝑖𝑛𝑒𝐻𝑒𝑎𝑙𝑡ℎ > 0.75) ∧ (𝑀𝑎𝑟𝑖𝑛𝑒𝐷𝑎𝑚𝑎𝑔𝑒𝑅𝑎𝑡𝑒 = 0.0)
→ (𝐻𝑒𝑎𝑙𝐵𝑖𝑑 < 0.25))

(3)

Utilizing Psion and JKIND, we can evaluate our singular FIS node over this specification and either receive
a mathematical guarantee that our system will adhere to this system in all cases, or receive a counterexample
trace which proves that our system does not. Table 2 shows that a counterexample was found. Note that
interestingly the presented counterexample corresponds to exactly the values 1.0 and 0.0 for our two inputs

http://dx.doi.org/10.20517/ces.2022.54

Page 14 of 22 Ernest et al. Complex Eng Syst 2023;3:4 I http://dx.doi.org/10.20517/ces.2022.54

Figure 10. RL performance comparison of the variant with a single FIS for siege tank control, the variant with a single FIS providing all control
actions, and the original system that is utilized within this study.

Table 2. Counterexample for Spec 1 failure prior to modification

Variable Value
MarineHealth 1.0
MarineDamageRate 0.0
HealBid 0.3

respectively. A singular rule in our RB will correspond to exactly when the inputs are at those values, and
those values are the extremes of the normalized space for both inputs. Hence, upon investigation of our RB
we would see that we have a rule in our chromosome of ”If Marine Health is Very High and Marine Damage
Rate is None, then Healing Bid is Low”. By changing the output MF to ”Very Low” for this rule, we can easily
solve this specification failure.

Though not a requirement, it is also often very beneficial to develop a scenario within the simulation environ-
ment that can help represent a potential case of a found counterexample. Observing the agent’s performance
through these specifically designed scenarios can both provide insight to the control issue, as well as provide
feedback to the solution of the problem once found. Note that removing the failure case from a specific sce-
nario does not guarantee that the specification will always hold, but measures can be taken to ensure this
within regions of interest and verified again using Formal Methods. In this case, it is not necessary due to the
simplicity of the counterexample found, but was completed and is seen below in Figures 11 and 12.

A scenario was developed in which there are two marines, a medivac, and two zerglings. The zerglings are at
full health, but the marines are wounded. In particular, the marine at the top of the formation is moderately

http://dx.doi.org/10.20517/ces.2022.54

Ernest et al. Complex Eng Syst 2023;3:4 I http://dx.doi.org/10.20517/ces.2022.54 Page 15 of 22

Figure 11. The three frames of the 𝜑1-non-adherent medivac healing spec scenario are (Left) both marines with the topmarine alive and the
bottom being healed, (Center) the top marine defeated and the bottom marine still being healed, and (Right) the scenario complete with
the bottom marine surviving and all zerglings defeated.

Figure 12. The three frames of the 𝜑1-adherent medivac healing spec scenario are (Left) both marines alive and the wounded top marine
being healed, (Center) the top marine under attack and surviving with medivac support, and (Right) the scenario complete with both
marines alive and all zerglings defeated.

hurt, and the marine at the bottom only slightly so. In the case of Figure 11 the unmodified chromosome was
used and for a slight period of time, before the zerglings reach the friendly forces, it heals the bottom marine
first. This leads to the top marine being defeated, reducing the damage output of the friendly squad by half.
The bottom marine does manage to survive, but just barely.

If instead the bottom marine is ignored, at least at first, then the medivac heals the top marine, managing to
keep both alive and secure a higher scoring victory. This is shown in Figure 12, though again simply because
this specific scenario shows adherence to the specification, formal verification is needed to confirm that it
always holds.

3.2.2. Safety specification 2
Safety specification 2 states ”If a separate friendly marine has already bid to attack a target whose health is very
low, than a marine’s fire bid on that target must be very low.”This is represented in the same manner as the first
specification in Equation 4 and in LTL in Equation 5, utilizing the MF distribution shown above in Section 2.3.

𝑆𝑝𝑒𝑐2 =𝐼 𝑓 (𝑇𝑎𝑟𝑔𝑒𝑡𝐻𝑒𝑎𝑙𝑡ℎ < 0.15)𝑎𝑛𝑑 (𝑀𝑎𝑟𝑖𝑛𝑒𝑠𝐴𝑠𝑠𝑖𝑔𝑛𝑒𝑑 > 0.0)
𝑡ℎ𝑒𝑛(𝐹𝑖𝑟𝑒𝐵𝑖𝑑 < 0.25)

(4)

http://dx.doi.org/10.20517/ces.2022.54

Page 16 of 22 Ernest et al. Complex Eng Syst 2023;3:4 I http://dx.doi.org/10.20517/ces.2022.54

Figure 13. The three frames from the 𝜑2-adherent marine firing control scenario are (Left) two marines with six wounded zerglings ap-
proaching, (Center) halfway through scenario with three remaining zerglings, and (Right) the scenario complete with both marines alive
due to intelligent targeting.

𝜑2 =□((𝑇𝑎𝑟𝑔𝑒𝑡𝐻𝑒𝑎𝑙𝑡ℎ < 0.15) ∧ (𝑀𝑎𝑟𝑖𝑛𝑒𝑠𝐴𝑠𝑠𝑖𝑔𝑛𝑒𝑑 > 0.0)
→ (𝐹𝑖𝑟𝑒𝐵𝑖𝑑 < 0.25))

(5)

Despite not being explicitly directed to, the resultant chromosome received from training was proven through
JKIND to already adhere to this specification, with the resultant output confirming correctness across all input
values. However, a relevant scenario was still created and is shown in Figure 13. Within this mission there are
only two marines on the friendly forces and six zerglings. However these marines are at full health and the
zerglings are eachwounded to the point where two shots from themarines would defeat them. Thus, intelligent
target assignment is required to win, but victory is possible.

While the training process did generate a model that was adherent to this specification, the confirmation of
specification adherence across all possible scenarios is still worthwhile.

3.2.3. Safety specifications 3 and 4
The last two specifications investigated within this study are related, both dealing with the fire control of the
siege tank. Specification 3 again being ”If a friendly unit would take splash damage from a tank shot and the
lowest health friendly in splash range is between very low and low health, only fire at the target if it would do
very high damage to the enemy” and able to represented as in Equation 6 and in LTL in Equation 7.

𝑆𝑝𝑒𝑐3 =𝐼 𝑓 (𝐹𝑟𝑖𝑒𝑛𝑑𝑙𝑦𝑆𝑝𝑙𝑎𝑠ℎ > 0.0)𝑎𝑛𝑑 (0.40 > 𝐿𝑜𝑤𝑒𝑠𝑡𝐹𝑟𝑖𝑒𝑛𝑑𝑙𝑦 > 0.15)𝑎𝑛𝑑 (𝑆ℎ𝑜𝑡𝐸 𝑓 𝑓 . < 0.75)
𝑡ℎ𝑒𝑛(𝐵𝑖𝑑 < 0.50)

(6)

𝜑3 =□((𝐹𝑟𝑖𝑒𝑛𝑑𝑙𝑦𝑆𝑝𝑙𝑎𝑠ℎ > 0.0) ∧ (𝐿𝑜𝑤𝑒𝑠𝑡𝐹𝑟𝑖𝑒𝑛𝑑𝑙𝑦 > 0.15) ∧ (𝐿𝑜𝑤𝑒𝑠𝑡𝐹𝑟𝑖𝑒𝑛𝑑𝑙𝑦 < 0.40)
∧ (𝑆ℎ𝑜𝑡𝐸 𝑓 𝑓 < 0.75) → (𝐵𝑖𝑑 < 0.50))

(7)

This is due to the fact that the siege tank will only fire at a target if the fire bid is above 50%, so if the shot
effectiveness is below ”very high” then we do not wish to fire. This specification did fail with the post-training
chromosome, and produced a counterexample as can be seen in Table 3. The counterexample displayed here
demonstrates that our AI model was perhaps close to adhering to the specification; the shot priority value
was not far above the maximum threshold of 0.50. For this specification there are three FISs to consider, but
given the context of the specification a general reduction in the output MFs of the Shot Safety FIS was selected
to modify this FIS until it was adherent. However, by changing the MFs and RBs in any of the three FISs

http://dx.doi.org/10.20517/ces.2022.54

Ernest et al. Complex Eng Syst 2023;3:4 I http://dx.doi.org/10.20517/ces.2022.54 Page 17 of 22

Table 3. Counterexample for Spec 3 failure prior to modification

Variable Value
CombinedEnemySplash 0.75
CombinedFriendlySplash 0.35
EnemyHealth 0.583
SplashedFriendlyLowestHealth 0.25
ShotEffectiveness 0.5
ShotPriority 0.55
ShotSafety 0.5

there are likely solutions that would be similarly adherent. This specification may be joined by others in the
future though, and attempting to modify this FIS tree while maintaining reasonable semantic logic is ideal;
thus modifying the safety evaluation FIS was selected.

A scenario was developed to demonstrate this issue which contains one siege tank, two marines, and six zer-
glings. Readers familiar with Starcraft 2 may be aware that siege tanks within the game do not natively have
the ability to hold their fire. Modifications to, or deeper usage of the API can allow a unit to be ”paused”. In the
example scenario created for the tank specifications however, a simple off-screen stationary structure served
as a possible target for the tank to attack, rather than the zergling if it chose to not fire at the hostile troops.

Figure 14 shows the post-training FIS in this new scenario. Four specific frames are present in this image,
with the upper row being frames 1 and 2, and the bottom being 3 and 4. In the first frame, the tank does take
an effective shot at the zerglings before they enter splash range with the top marine. The tank is not able to
take another shot again until Frame 2, which is not against the spec as the top marine has very low health at
this time and is surrounded by three zerglings. That shot defeats two zerglings, as well as the top marine, but
adhered to the specification. The remaining zergling then approaches a full health bottom marine in Frame 3.
Unfortunately, in Frame 4, the tank is ready to fire again, and kills a now wounded bottom marine just before
he could defeat the zergling and still be alive. However, the tank did survive so the friendly forces secured a
victory, just not an ideal or adherent one.

In Figure 15 the engagement plays out almost entirely the same in frames 1 through 3. However, come frame
4, the tank is opting to not attack, allowing the bottom marine to secure the final kill, completing the mission
with only 1 marine loss.

Specification 4 is essentially a much more conservative option than specification 3 and states ”Never cause
splash damage to any friendly unit, regardless of their health”. This is represented in natural language in Equa-
tion 8 and in LTL in Equation 9.

𝑆𝑝𝑒𝑐4 =𝐼 𝑓 (𝐹𝑟𝑖𝑒𝑛𝑑𝑙𝑦𝑆𝑝𝑙𝑎𝑠ℎ𝐷𝑎𝑚𝑎𝑔𝑒 > 0.0)
𝑡ℎ𝑒𝑛(𝐹𝑖𝑟𝑒𝐵𝑖𝑑 < 0.50)

(8)

𝜑4 = (𝐹𝑟𝑖𝑒𝑛𝑑𝑙𝑦𝑆𝑝𝑙𝑎𝑠ℎ𝐷𝑎𝑚𝑎𝑔𝑒 > 0.0)
→ (𝐹𝑖𝑟𝑒𝐵𝑖𝑑 < 0.50)

(9)

The failure case presented to this system from our trained chromosome is the exact same from JKIND, which
is as we expect given the fact that this specification is more conservative. Many solutions exist to create a set
of FISs that adhere to this specification, including modifying both the Shot Safety FIS to have much lower

http://dx.doi.org/10.20517/ces.2022.54

Page 18 of 22 Ernest et al. Complex Eng Syst 2023;3:4 I http://dx.doi.org/10.20517/ces.2022.54

Figure 14. The four frames from the 𝜑3-non-adherent siege tank firing control scenario are (Upper Left) scenario start showing siege tank
taking a safe shot, (Upper Right) siege tank fires at zerglings within range of healthymarine, (Lower Left) marine death due to friendly siege
tank fire, and (Lower Right) siege tank firing and defeating all zerglings and remaining friendly marine.

Figure 15. The four frames from the 𝜑3-adherent siege tank firing control scenario are (Upper Left) scenario start showing siege tank taking
a safe shot, (Upper Right) siege tank fires at zerglings within range of near-death marine, (Lower Left) low-health marine death due to
friendly siege tank fire, and (Lower Right) siege tank holding fire and allowing marine to defeat final zergling.

http://dx.doi.org/10.20517/ces.2022.54

Ernest et al. Complex Eng Syst 2023;3:4 I http://dx.doi.org/10.20517/ces.2022.54 Page 19 of 22

Figure 16. The four frames from the mission failure, 𝜑4-adherent siege tank firing control scenario are (Upper Left) scenario start showing
siege tank taking a safe shot, (Upper Right) siege tank does not fire on zergling group in proximity to top marine, (Lower Left) top marine is
defeated by zergling group and siege tank continues holding fire, and (Lower Right) mission failure because all marines defeated and siege
tank cannot target nearby units.

Output MFs referenced in the RB, as well as in the Shot Effectiveness/Safety Comparison FIS. A version of
the modified training chromosome was manually tuned to the point where adherence to this specification was
proven by JKIND. Figure 16 below shows the performance of this new system, which essentially opts out of
taking a meaningful shot at Frame 2 when the hostile army is heavily grouped around the top marine. While
adherent to the spec, this mission ends in failure.

4. DISCUSSION
As can be seen in the Results section, the performance of the AI system after the reinforcement learning process
was such that it was likely superhuman [25]. Note that this is heavily dependent on the hypothetical human
player. As the actions per minute of the AI system was not constrained, it could select and execute much
faster than any human likely could. Note that this is also somewhat different from other SC2 AI systems like
AlphaStar, as those are constrained to have near-human constraints on information and action execution rates.
The purpose of the AI in this work though is to perform a subset of actions in particular scenarios and is not
meant to be a general SC2 player. Instead, at least for specifications 1 through 3, the focus was on creating a
high performance AI for unit controls in difficult engagements that were also explainable and formally proven
to adhere to safety specifications.

With respect to the safety specifications, it was shown in both simulation and through verification with the
model checker JKIND that counterexamples were found for most of the specifications. That is, there were
conditions where the system could output actions that would violate the specifications. The counterexamples,
due to the transparent and explainable nature of GFTs, were then used to assist in identifying parameters that
needed correction. This was achieved by expert knowledge, specifically familiarity with Starcraft 2, but could
also be aided via further reinforcement learning runs to correct undesired behaviors. After correction, the

http://dx.doi.org/10.20517/ces.2022.54

Page 20 of 22 Ernest et al. Complex Eng Syst 2023;3:4 I http://dx.doi.org/10.20517/ces.2022.54

system was verified against the specifications which were shown to always hold. Although simulation results
also show that the systemperforms as intended in the particular runs executed, the benefit of formal verification
is that it will hold over any potential run with the given AI system. This is the differentiating factor for formal
verification compared tomore commonmethods that rely on numerical evaluation. Formal verification, in this
case model checking and SMT solving, can give definitive evidence that the system is correct, while numerical
evaluation can only return found counterexamples, but not conclusively identify that there are none.

The case of specification 4 presents a unique point; adherence to certain safety specifications may not neces-
sarily improve overall system performance. For example, there are often strict standards for use-cases that
require certification which may overall slow down or weaken control systems, but are still necessary in order
to deploy and trust the system. Consider laws such as speed limits placed onto a theoretical optimal driving
controller; if the fitness function is minimizing travel time and fuel consumption, an unconstrained RL agent
would likely optimize to illegal behaviors in some cases. However, for AI systems in mission/safety-critical
applications the benefit of formal verification cannot be understated. In this example of specification 4, all
friendly fire was strictly disallowed, even if it would lead to the death of the entire force.

Regarding explainability, the structure of the GFT created is such that actions are easily explained and inter-
pretable by humans. This is of particular interest when auditing the system for explanations on behavior that
was learned throughout the reinforcement learning process. In this case, it was also used for a human designer
to correct errors in the AI system. This is a powerful capability when creating complex AI control systems for
safety-critical applications. Although SC2 AI play will likely never be considered ”safety-critical”, it serves as a
good proxy problem for other decision-making applications in notionally similar environments.

4.1. Future work and extensions
Potentially the most obvious extension of this work is to make a more general AI for SC2 that plays more por-
tions of the game including things such as: base building, resource management, etc. This would demonstrate
the applicability and efficacy of GFT towards a well-known benchmark problem in RL.That could then be used
to show how explainability in complex AI systems may be desired, especially as a learning tool for humans.

In the future, these scenarios could also be used for comparisons against other RL approaches. Due to the lack
of explainability and formal verifiability of common RL techniques compared to GFTs, the resulting compari-
son would be purely performance based.

Another important extension of this work would be to extend the formal verification methodology to include
portions of the Starcraft 2 dynamics. Doing so would allow for reasoning about higher level behaviors of the
system. In this work, only properties about the GFT itself are verified, while inclusion of dynamic models for
portions of Starcraft 2 would allow for interesting temporal specifications to be evaluated. E.g. if dynamics are
included for unit damage, damage inflicted by attacks, cool downs, unit movements, etc., specifications could
be created to reason about, say, whether it’s possible for any friendly units to be lost, or finding guaranteed
minimums. The value of doing this is exceptional as it can provide definitive evidence of baseline performance,
but of course is much more difficult than verification of the AI system without dynamics.

5. CONCLUSION
In conclusion, a GFT model was developed and trained for a particular scenario and then verified against
four behavioral specifications. Post-training, the model did not adhere to three of these specifications, and
counter-examples were found from the formal methods tools utilized. For these cases, the GFT was evaluated
over scenarios within the Starcraft 2 environment which demonstrated the specific failure modes detailed in
the counterexamples. Modifications to the system were then made for each specification until the system was

http://dx.doi.org/10.20517/ces.2022.54

Ernest et al. Complex Eng Syst 2023;3:4 I http://dx.doi.org/10.20517/ces.2022.54 Page 21 of 22

proven to be adherent to these safety specifications. The resulting GFT is then guaranteed to be adherent to
specifications over all input values while being explainable and performant. While this study does not intend
to demonstrate performance of an entire Starcraft 2 game controller, it demonstrates the capability of a Fuzzy
Logic-based AI system to be trained and proven to adhere to safety specifications in a specific subset of the
control actions within this game that represent mission/safety-critical elements.

DECLARATIONS
Authors’ contributions
Made contributions to conception and design of the work, developed most associated code for Starcraft inte-
gration and reinforcement learning, performed data analysis and figures of interest, manuscript writing and
related tasks: Ernest N
Contributed to parts of the conception and design, implemented the formal verification techniques towards
Fuzzy Systems, performed analysis and translation of formal specifications, manuscript writing and related
tasks: Arnett T
Created the interfaces needed to easily integrate theThales’s toolkit with Python environments such as the SC2
interfaces used in this work, manuscript writing and related tasks: Phillips Z

Availability of data and materials
While the resultant GFT AI model and the Psion and EVE software cannot be shared openly, the Starcraft 2
map files utilized in the scenarios shown in this study could be. They are not currently hosted, but can be made
available upon request.

Financial support and sponsorship
None.

Conflicts of interest
All authors are employees of Thales Avionics Inc., from which two software packages that are commercially
available were utilized in this research.

Ethical approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Copyright
©The Author(s) 2023.

REFERENCES
1. Zhao Y,Wang H, Xu N, Zong G, Zhao X. Reinforcement learning-based decentralized fault tolerant control for constrained interconnected

nonlinear systems. Chaos, Solitons & Fractals 2023;167:113034. DOI
2. Tang F, Niu B, Zong G, Zhao X, Xu N. Periodic event-triggered adaptive tracking control design for nonlinear discrete-time systems via

reinforcement learning. Neural Netw 2022;154:43-55. DOI
3. Silver D, Huang A, Maddison CJ, et al. Mastering the game of Go with deep neural networks and tree search. Nature 2016;529:484-9.

DOI
4. Gunning D, Aha D. DARPA’s explainable artificial intelligence (XAI) program. AIMag 2019;40:44-58. DOI
5. Ross TJ. Fuzzy logic with engineering applications. John Wiley & Sons; 2009. DOI
6. Castro JL. Fuzzy logic controllers are universal approximators. IEEE Trans Syst, Man, Cybern 1995;25:629–35. DOI
7. Buckley J, Siler W, Tucker D. A fuzzy expert system. Fuzzy Sets and Systems 1986;20:1–16. DOI

http://dx.doi.org/10.20517/ces.2022.54
http://dx.doi.org/10.1016/j.chaos.2022.113034
http://dx.doi.org/10.1016/j.neunet.2022.06.039
http://dx.doi.org/10.1038/nature16961
http://dx.doi.org/10.1609/aimag.v40i2.2850
http://dx.doi.org/10.1145/208628.1065834
http://dx.doi.org/10.1109/21.370193
http://dx.doi.org/10.1016/S0165-0114(86)80027-6

Page 22 of 22 Ernest et al. Complex Eng Syst 2023;3:4 I http://dx.doi.org/10.20517/ces.2022.54

8. Coleman CP, Godbole D. A comparison of robustness: fuzzy logic, PID, and sliding mode control. In: Proceedings of 1994 IEEE 3rd
International Fuzzy Systems Conference. IEEE; 1994. pp. 1654–59. DOI

9. Moral A, Castiello C, Magdalena L, Mencar C. Explainable Fuzzy Systems. Springer; 2021. DOI
10. Arnett TJ. Verification of genetic fuzzy systems [MS Thesis]. University of Cincinnati; 2016. DOI
11. Ernest ND. Genetic fuzzy trees for intelligent control of unmanned combat aerial vehicles. University of Cincinnati; 2015. DOI
12. Herrera F. Genetic fuzzy systems: taxonomy, current research trends and prospects. Evol Intel 2008;1:27-46. DOI
13. Fleck DE, Ernest N, Adler CM, et al. Prediction of lithium response in first-episode mania using the LITHium Intelligent Agent (LITHIA):

pilot data and proof-of-concept. Bipolar Disord 2017;19:259-72. DOI
14. Ernest N, Carroll D, Schumacher C, et al. Genetic fuzzy based artificial intelligence for unmanned combat aerial vehicle control in

simulated air combat missions. J Def Manag 2016;;6:2167-0374. DOI
15. Thales. Thales GFT AI Toolkit. Thales; 2022. Available from: https://www.thalesgroup.com/en/markets/aerospace/big-data-aerospace/

genetic-fuzzy-tree-ai-toolkit-critical-decisions. [Last accessed on 20 Mar 2023]
16. Marques-Silva J. Practical applications of boolean satisfiability. In: 2008 9th International Workshop on Discrete Event Systems. IEEE;

2008. pp. 74–80. DOI
17. Hinchey MG, Bowen JP. Applications of formal methods. vol. 1. Prentice Hall New York; 1995. DOI
18. Ernest N, Kunkel B, Arnett T. An investigation into the impact of system transparency on work flows of fuzzy tree based AIs. In: North

American Fuzzy Information Processing Society Annual Conference. Springer; 2020. pp. 349–59. DOI
19. Moura Ld, Bjørner N. Z3: An efficient SMT solver. In: International conference on Tools and Algorithms for the Construction and

Analysis of Systems. Springer; 2008. pp. 337–40. DOI
20. Gacek A, Backes J, Whalen M, Wagner L, Ghassabani E. The JKind model checker. In: International Conference on Computer Aided

Verification. Springer; 2018. pp. 20–27. [DOI
21. Mamdani EH, Assilian S. An experiment in linguistic synthesis with a fuzzy logic controller. Int J Man-Mach Studies 1975;7:1–13. DOI
22. Scapin D, Cisotto G, Gindullina E, Badia L. Shapley Value as an Aid to Biomedical Machine Learning: a Heart Disease Dataset Analysis.

2022 22nd IEEE International Symposium on Cluster, Cloud and Internet Computing (CCGrid) 2022:933–39. DOI
23. Heuillet A, Couthouis F, Díaz-Rodríguez N. Collective EXplainable AI: Explaining Cooperative Strategies and Agent Contribution in

Multiagent Reinforcement Learning With Shapley Values. IEEE Comput Intell Mag 2022;17:59–71. DOI
24. Burnysc2. Burnysc2 python-SC2 Python Package. Github; 2022. Available from: https://github.com/BurnySc2/python-sc2. [Last ac-

cessed on 20 Mar 2023]
25. Wikipedia. Progress in artificial intelligence. Wikimedia Foundation; 2022. Available from: https://en.wikipedia.org/wiki/Progress_in_a

rtificial_intelligence#Current_performance. [Last accessed on 20 Mar 2023]

http://dx.doi.org/10.20517/ces.2022.54
http://dx.doi.org/10.1109/fuzzy.1994.343945
http://dx.doi.org/10.1007/978-3-030-71098-9
http://dx.doi.org/10.1007/978-3-030-81561-5_30
http://dx.doi.org/10.1142/s2301385015500120
http://dx.doi.org/10.1007/s12065-007-0001-5
http://dx.doi.org/10.1111/bdi.12507
http://dx.doi.org/10.4172/2167-0374.1000144
https://www.thalesgroup.com/en/markets/aerospace/big-data-aerospace/genetic-fuzzy-tree-ai-toolkit-critical-decisions
https://www.thalesgroup.com/en/markets/aerospace/big-data-aerospace/genetic-fuzzy-tree-ai-toolkit-critical-decisions
http://dx.doi.org/10.1109/WODES.2008.4605925
http://dx.doi.org/10.5555/546295
http://dx.doi.org/10.1007/978-3-030-81561-5_29
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1007/978-3-319-96142-2_3
http://dx.doi.org/10.1016/S0020-7373(75)80002-2
http://dx.doi.org/10.1109/CCGrid54584.2022.00113
http://dx.doi.org/10.1109/MCI.2021.3129959
https://github.com/BurnySc2/python-sc2
https://en.wikipedia.org/wiki/Progress_in_artificial_intelligence#Current_performance
https://en.wikipedia.org/wiki/Progress_in_artificial_intelligence#Current_performance

	1. Introduction
	2. Methods
	2.1. General GFT workflow
	2.1.1. Initial GFT structure
	2.1.2. GFT RL training
	2.1.3. Formal verification

	2.2. Starcraft 2 GFT development
	2.2.1. StarCraft 2 information
	2.2.3. Tree structure creation
	2.2.4. Explainability
	2.2.5. Reinforcement learning
	2.2.6. Specification identification and development

	3. Results
	3.1. Reinforcement learning
	3.1.1 Reinforcement learning comparison

	3.2. Formal verification
	3.2.1 Safety specification 1
	3.2.2. Safety specification 2
	3.2.3. Safety specifications 3 and 4

	4. Discussion
	4.1. Future work and extensions

	5. Conclusion
	Declarations
	Authors’ contributions
	Availability of data and materials
	Financial support and sponsorship
	Conflicts of interest
	Ethical approval and consent to participate
	Consent for publication
	Copyright

