Energy Materials

Supplementary Material

Constructing bimetal, alloy, and compound-modified nitrogen-doped biomassderived carbon from coconut shell as accelerants for boosting methane production in bioenergy system

Teng Ke¹, Sining Yun^{1,2,*}, Kaijun Wang¹, Tian Xing¹, Jiaoe Dang¹, Yongwei Zhang¹, Menglong Sun¹, Jinhang An¹, Lijianan Liu¹, Jiayu Liu¹

¹Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi, China.

²Qinghai Building and Materials Research Academy Co., Ltd, the Key Lab of Plateau Building and Eco-Community in Qinghai, Xining 810000, Qinghai, China.

*Correspondence to: Prof. Sining Yun, Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, Shaanxi, China. E-mail: alexsyun1974@aliyun.com/yunsining@xauat.edu.cn

Characterization

The morphology, structure, and component of the synthesized hybrid samples (Ni-N-C, Fe-N-C, and Fe/Ni-N-C) were identified by X-ray powder diffraction (XRD, D/Max2200, America), Raman spectroscopy (LabRAM HR Evolution, Horiba, France), Scanning electron microscopy (SEM, JSM-7001F, Japan), Energy dispersive X-ray spectroscopy (EDS), Transmission electron microscopy (TEM, JEM-3010, JEOL, Japan), and X-ray photoelectron spectroscopy (XPS, K-Alpha, Thermo-Fisher, USA). The drainage method was used to measure biogas production. The composition of methane was measured by gas chromatograph (GC9790, China). COD, TS, and VS are measured by the standard methods of the American Public Health Association (APHA, 2005) ^[1, 2]. The pH value was measured by an acidometer (PHS-3C, China). Thermogravimetry (TG), differential thermogravimetry (DTG), and differential scanning calorimetry (DSC) were tested by using thermal analyzer (STA449F3, Germany) to evaluate the stability of the digestates. Total nitrogen (TN), total phosphorus (TP), and total potassium (TK) were estimated according to standard methods (NY525-2021).

Mediated electrochemical reduction/oxidation (MER/MEO) were tested on an electrochemical workstation (CHI660E, China) in a typical three-electrode system with Ag/AgCl as the reference electrode, graphite rod as the counter electrode and glassy carbon electrode as the working electrode ^[3]. MER and MEO were carried out in buffer solutions (0.1 M K₂HPO₄, 0.1 M KCl, pH=7) using dibromide monohydrate (DQ) and 2, 2'-azino-bis (3-ethylbenzothiazolin-6-sulfonic acid) diammonium salts (ABTS) as

Energy Materials

electronic shuttles, respectively. Electron accepting/donating capacity (EAC/EDC) were calculated by the following formula:

$$EAC = \frac{\int \frac{I_{red}}{F} dt}{m}$$
(1)

$$EDC = \frac{\int \frac{I_{ox}}{F} dt}{m}$$
(2)

Where I_{red} and I_{ox} are the baseline-corrected currents of EAC and EDC, respectively, F is the Faraday constant (96485 A · s/mol e⁻), m is the mass of added accelerants, and the unit of EDC or EAC is µmol e⁻/g.

Kinetic analysis of biogas production

The modified Gompertz model was used to fit the biogas production and determine the relevant dynamic parameters ^[4, 5]. The formula of the modified Gompertz model is as follows in **Eq. (3)**.

$$Q(r) = Q_m * exp\left\{-exp\left[\frac{B_m \times e}{Q_m}(\beta - r) + 1\right]\right\}$$
(3)

Where Q(r) is the cumulative biogas production (mL/g VS) at time t; Q_m is the biogas production potential (mL/g VS); B_m is the maximum biogas production rate (mL/g VS/d); β is the lag phase (d); r is the digestion time (d); and e is constant (2.71828).

Ke et al. Energy Mater 2024;4:400011 **DOI:** 10.20517/energymater.2023.62

Energy Materials

Fig. S1. (a) HRTEM images and IFFT images for the (111) planes of Ni of Ni-N-C. (b-d) HRTEM images and IFFT images for (110), (111), and (110) planes of Fe, FeN, and Fe₂O₃ of Fe-N-C. (e-f) HRTEM images and IFFT images for (111) and (103) planes of FeNi₃ and Fe₃O₄ of Fe/Ni-N-C.

Fig. S2. C 1s XPS spectra of Ni-N-C (a), Fe-N-C (b), and Fe/Ni-N-C (c).

Accelerants	Pyridinic-N	Ni/Fe-N	Pyrrolic-N	Graphitic-N	Oxidized-N
Fe-N-C	18.80	24.06	27.52	7.72	21.91
Ni-N-C	26.89	17.42	21.97	9.89	23.83
Fe/Ni-N-C	11.81	12.79	42.53	10.80	22.07

Table S1. Fitting results for N 1s XPS spectra (at.%).

Table S2. Kinetic parameters related to the cumulative biogas production of different accelerants by the modified Gompertz model.

Groups	Measured cumulative biogas yield (mL/g VS)	Q _m (mL/g VS)	Bm (mL/g VS/d)	β (d)	Predicted cumulative biogas yield (mL/g VS)	R ²
Control	346.32 ± 14.71	372.40 ± 17.46	14.98 ± 0.28	1.42 ± 0.18	347.52 ± 1.18	0.9997
Ni-N-C						
0.875 g/L	402.95 ± 11.70	471.25 ± 17.27	15.75 ± 0.43	1.26 ± 0.29	415.11 ± 11.84	0.9983
1.750 g/L	444.73 ± 19.80	546.87 ± 21.64	17.82 ± 0.45	2.67 ± 0.27	468.23 ± 19.33	0.9983
2.625 g/L	509.92 ± 15.10	562.14 ± 10.46	22.97 ± 0.44	2.52 ± 0.17	522.19 ± 12.11	0.9995
3.500 g/L	470.87 ± 21.10	520.69 ± 12.67	20.35 ± 0.54	1.43 ± 0.17	481.95 ± 10.90	0.9990
Fe-N-C						
0.875 g/L	409.22 ± 37.95	490.90 ± 17.46	16.01 ± 0.37	1.39 ± 0.21	427.54 ± 17.98	0.9995
1.750 g/L	441.84 ± 33.12	485.57 ± 7.29	18.65 ± 0.31	1.37 ± 0.16	447.73 ± 5.78	0.9997
2.625 g/L	510.60 ± 41.21	534.00 ± 4.66	23.60 ± 0.32	1.73 ± 0.12	507.96 ± 2.60	0.9998
3.500 g/L	553.65 ± 26.73	567.45 ± 4.20	26.33 ± 0.33	1.41 ± 0.11	545.58 ± 8.01	0.9999
Fe/Ni-N-C						
0.875 g/L	494.69 ± 37.95	619.46 ± 28.73	19.09 ± 0.46	2.17 ± 0.24	520.70 ± 25.30	0.9987
1.750 g/L	563.35 ± 33.12	666.83 ± 16.94	23.55 ± 0.49	3.39 ± 0.21	585.08 ± 19.87	0.9993
2.625 g/L	587.76 ± 41.21	650.08 ± 10.56	28.17 ± 0.72	2.60 ± 0.25	612.34 ± 23.73	0.9994
3.500 g/L	507.08 ± 26.73	654.75 ± 29.17	18.27 ± 0.46	1.77 ± 0.33	526.14 ± 14.67	0.9991

Table S3.	Parameter	changes	before an	d after Aco	D.

Groups	Initial TS (g/kg)	Final TS (g/kg)	TS degradation (%)	Initial VS (g/kg)	Final VS (g/kg)	VS degradation (%)	Initial COD (mg/L)	Final COD (mg/L)	COD degradation (%)	Initial pH	Final pH
Control	73.60 ± 0.15	50.09 ± 0.14	29.64 ± 0.23	39.01 ± 0.13	21.95 ± 0.15	44.85 ± 0.04	59740.86 ± 258.3	40602.93 ± 302.35	32.03 ± 1.14	7.23 ± 0.04	7.59 ± 0.06
Ni-N-C											
0.875 g/L	73.60 ± 0.15	48.11 ± 0.13	34.64 ± 0.20	39.01 ± 0.13	21.95 ± 0.14	42.51 ± 0.12	59740.86 ± 258.3	35134.95 ± 412.20	41.19 ± 0.52	7.15 ± 0.04	7.56 ± 0.00
1.750 g/L	73.60 ± 0.15	47.39 ± 0.10	34.99 ± 0.19	39.01 ± 0.13	20.55 ± 0.17	46.01 ± 0.05	59740.86 ± 258.3	31229.25 ± 580.12	47.73 ± 0.47	7.16 ± 0.06	7.54 ± 0.01
2.625 g/L	73.60 ± 0.15	44.78 ± 0.15	38.48 ± 0.12	39.01 ± 0.13	19.42 ± 0.21	51.59 ± 0.18	59740.86 ± 258.3	$26.932.98 \pm 496.47$	54.92 ± 0.39	7.21 ± 0.07	7.52 ± 0.01
3.500 g/L	73.60 ± 0.15	46.81 ± 0.11	35.78 ± 0.18	39.01 ± 0.13	19.90 ± 0.06	47.62 ± 0.12	59740.86 ± 258.3	30448.11 ± 328.64	49.03 ± 0.28	$7.1 \ 1 \pm 0.02$	7.54 ± 0.05
Fe-N-C											
0.875 g/L	73.60 ± 0.15	$46.50\pm\!\!0.14$	38.06 ± 0.23	39.01 ± 0.13	20.31 ± 0.11	49.19 ± 0.15	59740.86 ± 258.3	37478.37 ± 303.74	36.39 ± 0.55	7.30 ± 0.07	7.51 ± 0.10
1.750 g/L	73.60 ± 0.15	45.69 ± 0.11	39.21 ± 0.18	39.01 ± 0.13	19.40 ± 0.09	51.57 ± 0.13	59740.86 ± 258.3	35134.95 ± 285.12	45.48 ± 0.16	7.20 ± 0.06	7.52 ± 0.04
2.625 g/L	73.60 ± 0.15	43.60 ± 0.08	42.14 ± 0.11	39.01 ± 0.13	18.93 ± 0.23	52.81 ± 0.08	59740.86 ± 258.3	28885.83 ± 496.33	51.65 ± 0.62	7.17 ± 0.03	7.52 ± 0.01
3.500 g/L	73.60 ± 0.15	$41.14\pm\!0.13$	45.60 ± 0.23	39.01 ± 0.13	17.95 ± 0.19	55.39 ± 0.16	59740.86 ± 258.3	23808.42 ± 214.26	60.15 ± 0.88	7.14 ± 0.02	7.45 ± 0.05
Fe/Ni-N-C											
0.875 g/L	73.60 ± 0.15	43.28 ± 0.13	42.59 ± 0.19	39.01 ± 0.13	19.32 ± 0.10	51.78 ± 0.14	59740.86 ± 258.3	30057.54 ± 205.68	49.69 ± 0.47	7.25 ± 0.00	7.51 ± 0.02
1.750 g/L	73.60 ± 0.15	40.33 ± 0.09	46.74 ± 0.17	39.01 ± 0.13	$16.25{\pm}~0.13$	59.87 ± 0.03	59740.86 ± 258.3	24198.99 ± 132.59	59.49 ± 0.39	7.34 ± 0.04	7.55 ± 0.03
2.625 g/L	73.60 ± 0.15	28.81 ± 0.08	62.92 ± 0.10	39.01 ± 0.13	14.50 ± 0.16	64.47 ± 0.16	59740.86 ± 258.3	20683.86 ± 294.15	65.38 ± 0.74	7.12 ± 0.03	7.57 ± 0.04
3.500 g/L	73.60 ± 0.15	39.70 ± 0.12	47.62 ± 0.22	39.01 ± 0.13	18.31 ± 0.14	54.45 ± 0.07	59740.86 ± 258.3	27323.55 ± 325.28	54.26 ± 0.26	7.24 ± 0.02	7.49 ± 0.02

Crouns		COD (mg/	L)	Cumulative	Required COD
Groups	Initial	Final	Reduction	(mL/g VS)	(mg/L)
Control	59740.86	40602.93	19137.93	346.32	22362.38
Ni-N-C					
0.875 g/L	59740.86	35134.95	24605.91	402.95	26019.06
1.750 g/L	59740.86	31229.25	28511.61	444.73	28716.85
2.625 g/L	59740.86	26932.98	32807.88	509.92	32926.26
3.500 g/L	59740.86	30448.11	29292.75	470.87	30404.75
Fe-N-C					
0.875 g/L	59740.86	37478.37	22262.49	409.22	26423.92
1.750 g/L	59740.86	35134.95	24605.91	441.84	28530.24
2.625 g/L	59740.86	28885.83	30855.03	510.6	32970.17
3.500 g/L	59740.86	23808.42	35932.44	553.65	35749.97
Fe/Ni-N-C					
0.875 g/L	59740.86	30057.54	29683.32	494.69	31942.84
1.750 g/L	59740.86	24198.99	35541.87	563.35	36376.31
2.625 g/L	59740.86	20683.86	39057	587.76	37952.50
3.500 g/L	59740.86	27323.55	32417.31	507.08	32742.88

Table S4	. The mass	balance of	of COD	in anaerobic	digestion	process.
----------	------------	------------	--------	--------------	-----------	----------

Substract	Accelerants	Biogas yield (mL/g VS)	COD removal rate	Ref.
Cow dung	Bio-based carbon derived from corn cob, sawdust, waste carton, and walnut shell	380-502	51.3-67.8%	[6]
Cow dung and aloe peel waste	/	250-300	27.3-61.8%	[1]
Cow dung and acorn slag waste	Aloe peel-derived bio-based carbon and acorn shell derived bio-based carbon	431-580	60.5-79.3%	[7]
Cow dung and aloe peel waste	Vermiculite	295-354	45.5-71.0%	[8]
Cow dung and aloe peel waste	Ti-sphere core-shell structured additives	366-498	53.0-78.3%	[9]
Cow dung and aloe peel waste	Fly-ash	476-588	35.9-52.7%	[10]
Cow dung and aloe peel waste	Dual-heteroatom doped bio-based carbon	385-527	40.6-80.2%	[11]
Cow dung and aloe peel waste	Surface-annealed titanium spheres	435-552	59.8-71.3%	[5]
Cow dung and aloe peel waste	Modified black phosphorus	320-362	47.1-64.4%	[12]
Cow dung and aloe peel waste	Aloe peel-derived carbon quantum dots	522-570	48.8-57.9%	[13]
Cow dung and food waste	/	147-300	48.1-65.1%	[14]
Cow dung and aloe peel waste	Ni-N-C, Fe-N-C, and Fe/Ni-N-C	403-588	36.4-65.4%	This work

Table S5. The co-digestion performance of natural plant and cattle manure with the accelerant fabricated without the coconut shell or with other biomass from our previous work.

Co	ntrast	Mean Difference (TS reduction for same	Significance (TS reduction for same	Mean Difference (TS reduction	Significance (TS reduction
bimetallic	monometallic	concentration (0.875 g/L))	concentration (0.875 g/L))	concentration)	concentration)
Fe/Ni-N-C	Ni-N-C	7.95*	< 0.01	24.43*	<0.01
Fe/Ni-N-C	Fe-N-C	4.52*	< 0.01	17.32*	<0.01

Table SU. Comparisons of 15 reduction between the mi-m-C, re-m-C, and re-mi-r	Table S6. Com	parisons of TS	reduction	between the	Ni-N-C.	Fe-N-C	, and Fe/Ni-N-
--	---------------	----------------	-----------	-------------	---------	--------	----------------

*. The mean difference is significant at the 0.05 level. To more intuitively explain the reason for selecting the bimetallic accelerant as the optimal one, we performed a one-way analysis of variance on the TS reduction of same concentration (0.875 g/L) and best concentration (2.625 g/L for Ni-N-C, 3.500 g/L for Fe-N-C, and 2.625 g/L for Fe/Ni-N-C) of Ni-N-C, Fe-N-C, and Fe/Ni-N-C, respectively. The contrast result of VS reduction is similar.

References:

- [1]Huang X, Yun S, Zhu J, Du T, Zhang C, and Li X: 'Mesophilic anaerobic co-digestion of aloe peel waste with dairy manure in the batch digester: Focusing on mixing ratios and digestate stability', *Bioresour. Technol.*, 2016, 218, 62-68.
- [2]Liu L, Zhang T, Wan H, Chen Y, Wang X, Yang G, and Ren G: 'Anaerobic co-digestion of animal manure and wheat straw for optimized biogas production by the addition of magnetite and zeolite', *Energy Convers. Manage.*, 2015, 97, 132-139.
- [3]Wang K, Yun S, Ke T, An J, Abbas Y, Liu X, Zou M, Liu L, and Liu J: 'Use of bag-filter gas dust in anaerobic digestion of cattle manure for boosting the methane yield and digestate utilization', *Bioresour. Technol.*, 2022, 348, 126729.
- [4]Wang K, Yun S, Xing T, Li B, Abbas Y, and Liu X: 'Binary and ternary trace elements to enhance anaerobic digestion of cattle manure: Focusing on kinetic models for biogas production and digestate utilization', *Bioresour. Technol.*, 2021, **323**, 124571.
- [5]Ke T, Yun S, Wang K, An J, Liu L, and Liu J: 'Enhanced anaerobic co-digestion performance by using surface-annealed titanium spheres at different atmospheres', *Bioresour. Technol.*, 2021, 347, 126341.

Energy Materials

- [6]Yun S, Fang W, Du T, Hu X, Huang X, Li X, Zhang C, and Lund P D: 'Use of bio-based carbon materials for improving biogas yield and digestate stability', *Energy*, 2018, 164, 898-909.
- [7]Wang Z, Yun S, Xu H, Wang C, Zhang Y, Chen J, and Jia B: 'Mesophilic anaerobic co-digestion of acorn slag waste with dairy manure in a batch digester: Focusing on mixing ratios and biobased carbon accelerants', *Bioresour. Technol.*, 2019, 286, 121394.
- [8]Xu H, Yun S, Wang C, Wang Z, and Li B: 'Improving performance and phosphorus content of anaerobic co-digestion of dairy manure with aloe peel waste using vermiculite', *Bioresour*. *Technol.*, 2020, 301, 122753.
- [9]Jia B, Yun S, Shi J, Han F, Wang Z, Chen J, Abbas Y, Xu H, Wang K, and Xing T: 'Enhanced anaerobic mono- and co-digestion under mesophilic condition: Focusing on the magnetic field and Ti-sphere core-shell structured additives', *Bioresour. Technol.*, 2020, **310**, 123450.
- [10]Abbas Y, Yun S, Wang K, Ali Shah F, Xing T, and Li B: 'Static-magnetic-field coupled with fly-ash accelerant: A powerful strategy to significantly enhance the mesophilic anaerobic-codigestion', *Bioresour. Technol.*, 2021, **327**, 124793.
- [11]Li B, Yun S, Xing T, Wang K, Ke T, and An J: 'A strategy for understanding the enhanced anaerobic co-digestion via dual-heteroatom doped bio-based carbon and its functional groups', Chem. Eng. J., 2021, 425, 130473.
- [12]An J, Yun S, Wang W, Wang K, Ke T, Liu J, Liu L, Gao Y, and Zhang X: 'Enhanced methane production in anaerobic co-digestion systems with modified black phosphorus', *Bioresour*. *Technol.*, 2023, 368, 128311.
- [13]Liu L, Yun S, Ke T, Wang K, An J, and Liu J: 'Dual utilization of aloe peel: Aloe peel-derived carbon quantum dots enhanced anaerobic co-digestion of aloe peel', *Waste Manage.*, 2023, 159, 163-173.
- [14]Abbas Y, Yun S, Mehmood A, Shah F A, Wang K, Eldin E T, Al-Qahtani W H, Ali S, and Bocchetta P: 'Co-digestion of cow manure and food waste for biogas enhancement and nutrients revival in bio-circular economy', *Chemosphere*, 2023, **311**, 137018.