Supplementary Materials

Selective photooxidation of 5-hydroxymethylfurfural in water enabled by highly dispersed gold nanoparticles on graphitic carbon nitride

Qizhao Zhang¹, Botao Fan¹, Yuxi Wang¹, Bang Gu^{1,*}, Qinghu Tang², Feng Qiu³, Qiue Cao¹, Wenhao Fang^{1,*}

¹School of Chemical Science and Technology, Yunnan University, Kunming 650091, Yunnan, China.

²School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions - Ministry of Education, Henan Normal University, Xinxiang 453007, Henan, China.
³National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, Yunnan, China.

***Correspondence to:** Dr. Bang Gu and Prof. Wenhao Fang, School of Chemical Science and Technology, Yunnan University, 2 North Cuihu Road, Kunming 650091, Yunnan, China. E-mail: <u>gubang@ynu.edu.cn</u>; <u>wenhao.fang@ynu.edu.cn</u>

Catalyst	Au loading (wt%)	(h k l)	2θ(°)	FWHM (°)	d, Au (nm)
Au/CN(I)	0.99	_	_	_	_
Au/CN(II)	1.02	(1 1 1)	38.2	1.252	6.7
Au/CN(III)	1.00	(1 1 1)	38.2	1.129	7.5

Supplementary Table 1. The precise Au loading measured by ICP-MS and the mean Au size calculated by the Scherrer equation

Supplementary Table 2. Comparison of catalytic performances of metal oxide-based catalysts for photooxidation of HMF to DFF in water under simulated sunlight

Catalyst	Prod. DFF	Conv. HMF	Select. DFF	Yield DFF	References
	(mg g ⁻¹ h ⁻¹)	(%)	(%)	(%)	
N/TiO ₂	1.4	40	26	10	[1]
ZnO/PPy	3.1	5	12	1	[2]
Au ₃ Cu ₁ /Ti ₁₅ Si ₈₅ SFD	4.5	21	34	7	[3]
Bi ₂ WO ₆	19.2	26	73	19	[4]
HP brookite (TiO ₂)	53	20	21	4	[5]
$(Cu_2O)_{0.16}$ TiO ₂	64.1	52	44	23	[6]
Au/CN(I)	72.7	68	38	26	This work

Supplementary Table 3. Energy band positions and band gaps of g-C₃N₄ carriers and

supported-Au catalysts

Sample	$E_{ m g}$	$E_{\rm VB}$, vs.	$E_{\rm f}$ vs.	$E_{\rm f}$ vs.	$E_{\rm VB}$ vs.	E _{CB} vs.	$E_{ m g-Au}$	ECB-Au VS.
	(eV)	$E_{\rm f}({ m eV})$	SCE (V)	NHE (V)	NHE (V)	NHE (V)	(eV)	NHE (V)
CN(I)	2.90	2.40	-0.80	-0.56	1.84	-1.06	_	_
CN(II)	2.87	2.30	-0.87	-0.63	1.67	-1.20	_	_
CN(III)	2.82	2.50	-0.91	-0.67	1.83	-0.99	_	_
ACN(I)	2.75	2.00	-0.98	-0.74	1.26	-1.49	1.51	-2.25
ACN(II)	2.74	1.10	-0.91	-0.67	0.43	-2.31	1.35	-2.02
ACN(III)	2.77	0.70	-0.92	-0.68	0.02	-2.75	1.25	-1.93

Supplementary Scheme 1. Schematic diagram for the photodeposition synthesis of g-C₃N₄ (*i.e.*, using three different precursors) supported-Au catalysts.

Supplementary Scheme 2. Schematic illustration of the photocatalytic reaction system.

Supplementary Figure 1. Mott-Schottky plots of CN(I), CN(II), CN(III) Au/CN(I), Au/CN(II) and Au/CN(III).

Supplementary Figure 2. Photocurrent measurement of g-C₃N₄ carriers and supported Au

catalysts.

Supplementary Figure 3. (A) PL spectra of CN(I), CN(II), CN(III) and Au/CN(I); (B) EIS in the form of Nyquist plots of CN(I), CN(II), CN(III) Au/CN(I), Au/CN(II), and Au/CN(III).

Supplementary Figure 4. XPS spectra of Au 4f core level for CN(I) and Au/CN(I).

Supplementary Figure 5. XPS spectra of C 1s core level for CN(I) and Au/CN(I).

Supplementary Figure 6. Catalytic results of the controlled experiments over the Au/CN(I) catalyst by adding catalase scavenger for H_2O_2 during photooxidation of HMF to DFF.

Supplementary Figure 7. (A) TEM and (B) HRTEM images, and (C-E) XPS spectra of the Au/CN(I) catalyst pre- and post-reaction.

References

1. Krivtsov I, Ilkaeva M, Salas-Colera E, et al. Consequences of Nitrogen Doping and Oxygen Enrichment on Titanium Local Order and Photocatalytic Performance of TiO₂ Anatase. *J Phys Chem C* 2017;121:6770-80. DOI: 10.1021/acs.jpcc.7b00354.

2. Gonzalez-Casamachin DA, Rivera De la Rosa J, Lucio–Ortiz CJ, Sandoval-Rangel L, García CD. Partial oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid using O₂ and a photocatalyst of a composite of ZnO/PPy under visible-light: Electrochemical characterization and kinetic analysis. *Chem Eng J* 2020;393:124699. DOI: 10.1016/j.cej.2020.124699.

 Allegri A, Maslova V, Blosi M, et al. Photocatalytic Oxidation of HMF under Solar Irradiation: Coupling of Microemulsion and Lyophilization to Obtain Innovative TiO₂-Based Materials. *Molecules* 2020;25:5225. DOI: 10.3390/molecules252252525. 4. Kumar A, Srivastava R. Rose-like Bi₂WO₆ Nanostructure for Visible-Light-Assisted Oxidation of Lignocellulose-Derived 5-Hydroxymethylfurfural and Vanillyl Alcohol. *ACS Appl Nano Mater* 2021;4:9080-93. DOI: 10.1021/acsanm.1c01679.

5. Yurdakal S, Tek BS, Alagöz O, et al. Photocatalytic Selective Oxidation of

5-(Hydroxymethyl)-2-furaldehyde to 2,5-Furandicarbaldehyde in Water by Using Anatase, Rutile, and Brookite TiO₂ Nanoparticles. *ACS Sustain Chem Eng* 2013;1:456-61. DOI: 10.1021/sc300142a.

 Zhang Q, Zhang H, Gu B, Tang Q, Cao Q, Fang W. Sunlight-driven photocatalytic oxidation of
 5-hydroxymethylfurfural over a cuprous oxide-anatase heterostructure in aqueous phase. *Appl Catal B* 2023;320:122006. DOI: 10.1016/j.apcatb.2022.122006.