Supplementary Materials

Oxygen coordinated Cu single atom catalysts: a superior catalyst towards electrochemical CO₂ reduction for methane production

Jundi Qin[#], Xiao Hu[#], Kanghua Miao, Xiongwu Kang

School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China. [#]Authors contributed equally.

Correspondence to: Prof. Xiongwu Kang, School of Environment and Energy, South China University of Technology, 382 East Waihuan Road, Higher Education Mega Center, Guangzhou, China, 510006. Email: esxkang@scut.edu.cn

Figure S1. XRD patterns of Cu/C and Cu SAC.

Figure S2. XPS of C 1s for (a) Cu/C and (b) Cu SAC.

Figure S3. XPS of O 1s of Cu/C.

Figure S4. Nyquist plots in the frequency range 1 M Hz to 0.01Hz at -1.0V vs. RHE.

Figure S5. Double-layer capacitance of (a) Cu SAC and (b) Cu/C at different scan rate. (c) Electrochemically surface areas estimated from the double-layer capacitance of the samples.

Figure S6. Partial current density of each product normalized to the ECSA: (a) Cu SAC; (b) Cu/C.

Figure S7. Top and side views of the optimized configurations involved in the reaction pathway for CH₄ formation on Cu-O₄ SAC.

Figure S8. Top and side views of the optimized configurations involved in the reaction pathway for CH₄ formation on Cu-N₄ SAC.

Figure S9. Top and side views of the optimized configurations involved in the reaction pathway for CH₄ formation on Cu (111).

Figure S10. Bader charge of Cu-O₃N SAC, Cu-O₂N₂ SAC, Cu-ON₃ SAC.

Figure S11. Differential charge density of Cu-O₄ SAC and Cu-N₄ SAC.

Figure S12. Bader charge of COOH and CHO on (a-b) Cu-N₄ SAC, (c-d) Cu-O₄ SAC and (e-f) Cu (111).

Figure S13. Differential charge density of COOH on Cu-O₄ SAC. (a) top view and (b) side view. Differential charge density of COOH on Cu-N₄ SAC. (c) top view and (d) side view.

Figure S14. Differential charge density of CHO on Cu-O₄ SAC. (a) top view and (b) side view. Differential charge density of CHO on Cu-N₄ SAC: (c) top view and (d)side view.

Figure S15. Gibbs free energy diagram of CH₄, CO, HCOOH and CH₃OH by eCO₂RR on Cu-O₄ SAC.

Figure S16. Top and side views of the optimized configurations of adsorbed species involved in the reaction pathway for CH₃OH formation on Cu-O₄ SAC.

Figure S17. Top and side views of the optimized configurations involved in the reaction pathway for HCOOH formation on Cu-O₄ SAC.

Figure S18. Top and side views of the optimized configurations involved in the reaction pathway for CO formation on Cu-O₄ SAC.

Table S1.	Structural	parameters	of the	Cu SAC	c obtained	from	EXAFS	fitting
						-		

Sample	Path	Ν	R (Å)	$\Delta E_0(eV)$	σ ² ×103(Å ²)	R factor
Cu	Cu-O	3.9	1.93	-1.053	4.09	0.019

N, coordination number; R, distance between absorber and backscatter atoms; ΔE_0 , inner potential correction to account for the difference in the inner potential between the sample and the reference compound. σ^2 , Debye–Waller factor; S₀² fitting from Cu sample defined as 0.79.

Catalysts	Electrolyte/	Potential	JCH4	FE СH4	TOF	Dof	
Catalysis	Device	(V vs. RHE)	(mA·cm ⁻²)	(%)	(s ⁻¹)	NEI.	
		1.00	200.0	63	3.67	This	
Cu-O ₄ SAC	I M KOH/F-Cell	-1.00	-200.0			work	
CuSiOx	1 M KOH/F-Cell	-1.60	-170.0	60.00		[1]	
Cu-TBrPP	1 M KOH/F-Cell	-1.00	-173.6	55.80	0.50	[2]	
Cu ₄ I	1 M KOH/F-Cell	-1.08	-60.7	57.20	NA	[3]	
EDTA/CNT	0.5 M KHCO ₃ /H- Cell	-1.30	-16.5	61.6	NA	[4]	
CuTAPP	0.5 M KHCO ₃ /F- Cell	-1.63	-142.0	54.80	0.28	[5]	
m-Cu NPs	0.1 M KHCO ₃ /H- Cell	-1.30	-10.9	50.00	NA	[6]	
Cu/CeO ₂ -R	0.1 M KHCO ₃ /H- Cell	-1.60	-16.0	49.30	2.22	[7]	
Cu-FeSA	1 M KHCO ₃ /F-Cell	-1.10	-128.0	64.00	8.83	[8]	
Cu-PorOH	0.5 m KHCO ₃ /H- Cell	-1.50	-23.2	51.30	48.3 0	[3]	
Cu NWs	0.1M KHCO ₃ /H- Cell	-1.25	-7.5	55.00	NA	[9]	
La ₅ Cu ₉₅	0.5 M KHCO ₃ /F- Cell	-1.72	-193.5	64.50	NA	[10]	
Cu@NC-3	0.1 M KHCO ₃ /H- Cell	-1.65	-30.0	30.00	NA	[11]	
Ag-Cu ₂ O-3	0.1 M KHCO ₃ /H- Cell	-1.50	-13.1	62.00	2.36	[12]	
Cu	1 M KHCO ₃ /F-Cell	-1.40	-108.0	48.00	NA	[13]	

Table S2. Performance comparison of eCO₂RR to CH₄ of Cu-O₄ SAC with reported catalysts

 Sample
 Cu/C
 Cu SAC

 C_{dl} (mF/cm²)
 25.6
 22

 ECSA (cm²)
 0.64
 0.24

Table S3. Double layer capacitance and electrochemical active area of Cu/C and Cu SAC

References

- Tan X, Sun K, Zhuang Z, Hu B, Zhang Y, et al. Stabilizing Copper by a Reconstruction-Resistant Atomic Cu–O–Si Interface for Electrochemical CO₂ Reduction[J]. *Journal of the American Chemical Society*, **2023**, 145(15): 8656-8664.<u>http://dx.doi.org/10.1021/jacs.3c01638</u>
- Jiang H, Zhao P, Shen H, Yang S, Gao R, et al. New Insight into the Electronic Effect for Cu Porphyrin Catalysts in Electrocatalytic of CO₂ into CH₄[J]. *Small*, 2024, 20(2): 2304998.<u>http://dx.doi.org/https://doi.org/10.1002/smll.202304998</u>
- Zhang Y, Zhou Q, Qiu Z-F, Zhang X-Y, Chen J-Q, et al. Tailoring Coordination Microenvironment of Cu(I) in Metal–Organic Frameworks for Enhancing Electroreduction of CO₂ to CH₄[J]. *Advanced Functional Materials*, 2022, 32(36): 2203677.<u>http://dx.doi.org/https://doi.org/10.1002/adfm.202203677</u>
- Huang M X, Gong S P, Wang C L, Yang Y, Jiang P, et al. Lewis-Basic EDTA as a Highly Active Molecular Electrocatalyst for CO₂ Reduction to CH₄[J]. *Angewandte Chemie International Edition*, **2021**, 60(42): 23002-23009.http://dx.doi.org/10.1002/anie.202110594
- Yu P E, Lv X M, Wang Q H, Huang H L, Weng W J, et al. Promoting Electrocatalytic CO₂ Reduction to CH₄ by Copper Porphyrin with Donor-Acceptor Structures[J]. *Small*, 2023, 19(4).<u>http://dx.doi.org/10.1002/sml1.202205730</u>
- Kim M K, Kim H J, Lim H, Kwon Y, Jeong H M. Metal-organic framework-mediated strategy for enhanced methane production on copper nanoparticles in electrochemical CO₂ reduction[J]. *Electrochimica Acta*, **2019**, 306: 28-34.<u>http://dx.doi.org/10.1016/j.electacta.2019.03.101</u>

- Xue L, Zhang C J, Wu J F, Fan Q Y, Liu Y, et al. Unveiling the reaction pathway on Cu/CeO₂ catalyst for electrocatalytic CO₂ reduction to CH₄[J]. *Applied Catalysis B: Environment and Energy*, 2022, 304.<u>http://dx.doi.org/10.1016/j.apcatb.2021.120951</u>
- Hung S-F, Xu A, Wang X, Li F, Hsu S-H, et al. A metal-supported single-atom catalytic site enables carbon dioxide hydrogenation[J]. *Nature Communications*, 2022, 13(1): 819.<u>http://dx.doi.org/10.1038/s41467-022-28456-9</u>
- Li Y F, Cui F, Ross M B, Kim D, Sun Y, et al. Structure-Sensitive CO₂ Electroreduction to Hydrocarbons on Ultrathin 5-fold Twinned Copper Nanowires[J]. *Nano Letters*, 2017, 17(2): 1312-1317.<u>http://dx.doi.org/10.1021/acs.nanolett.6b05287</u>
- 10. Zhao J, Zhang P, Yuan T H, Cheng D F, Zhen S Y, et al. Modulation of *CHXO Adsorption to Facilitate Electrocatalytic Reduction of CO2 to CH4 over Cu-Based Catalysts[J]. *Journal of the American Chemical Society*, **2023**, 145(12): 6622-6627.<u>http://dx.doi.org/10.1021/jacs.2c12006</u>
- Jiang C J, Hou Y, Liu H, Wang L T, Zhang G R, et al. CO₂ electrocatalytic reduction on Cu nanoparticles loaded on nitrogen- doped carbon[J]. *Journal of Eelectroanalytical Chemistry*, 2022, 915.<u>http://dx.doi.org/10.1016/j.jelechem.2022.116353</u>
- 12. Sun M, Zhang L X, Tian F L, Li J X, Lei Y Q, et al. Mechanistic investigation on Ag-Cu₂O in electrocatalytic CO₂ to CH₄ by in situ/operando spectroscopic and theoretical analysis[J]. *Journal of Energy Chemistry*, **2024**, 88: 521-531.<u>http://dx.doi.org/10.1016/j.jechem.2023.10.004</u>
- 13. Wang X, Xu A N, Li F W, Hung S F, Nam D H, et al. Efficient Methane Electrosynthesis Enabled by Tuning Local CO₂ Availability[J]. *Journal of the American Chemical Society*, **2020**, 142(7): 3525-3531.http://dx.doi.org/10.1021/jacs.9b12445