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Abstract
Aging promotes structural and functional remodeling of the heart, even in the absence of external factors. There is 
growing clinical and experimental evidence supporting the existence of sex-specific patterns of cardiac aging, and 
in some cases, these sex differences emerge early in life. Despite efforts to identify sex-specific differences in 
cardiac aging, understanding how these differences are established and regulated remains limited. In addition to 
contributing to sex differences in age-related heart disease, sex differences also appear to underlie differential 
responses to cardiac stress such as adrenergic activation. Identifying the underlying mechanisms of sex-specific 
differences may facilitate the characterization of underlying heart disease phenotypes, with the ultimate goal of 
utilizing sex-specific therapeutic approaches for cardiac disease. The purpose of this review is to discuss the 
mechanisms and implications of sex-specific cardiac aging, how these changes render the heart more susceptible 
to disease, and how we can target age- and sex-specific differences to advance therapies for both male and female 
patients.
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INTRODUCTION
Cardiovascular diseases (CVD) are the leading cause of death worldwide[1], with millions of individuals 
affected by CVD each year, making it a burdensome and costly public health problem. While aging impairs 
the cardiovascular system and is the dominant risk factor for CVD, CVD is not only a disease of the elderly. 
Rather, CVD is emerging in younger adults more often[2]. However, most of the research efforts on 
prevention and treatment of CVD ignore age and have focused on the development of interventions that 
target “traditional” CVD risk factors such as obesity, hypertension, and diabetes. While these risk factors are 
undoubtedly important and research efforts to understand them are critical to advance knowledge, more 
work is needed to understand the impact of age on the development of CVD, given the robust correlation 
between the development of disease and advanced age.

Aging is a complex biological process characterized by epigenetic alterations, genomic instability, cellular 
senescence, and mitochondrial dysfunction, amongst other cellular changes. Although there is substantial 
inter-individual variability in the aging process, it is clear that sex differences are present in aging. For 
example, women live longer than men, consistent with lower biological ages as assessed by molecular 
biomarkers[3]. Nonetheless, women are frailer and have worse health at the end of life[3-5]. Substantial clinical 
data demonstrates widespread sex differences with respect to cardiovascular structure and function. 
However, at present, there is relatively limited information on molecular mechanisms of sex-specific 
differences in cardiac aging and how sex-specific differences in the heart interact with the aging process. 
The reason for this lack of knowledge may be rooted in the long tradition of male-biased research[6] and 
some of the complications in including women and female animals due to hormonal fluctuations. Here we 
attempt to summarize what is known of cardiac aging and sex differences that contribute to distinct cardiac 
aging in men and women.

CARDIAC AGING IN MEN AND WOMEN
The aging heart
Aging leads to deterioration of cardiac structure and function in both men and women[7]. Although the 
mechanisms are not fully clear and are multifactorial, an important contribution to increased risk of CVD 
with advanced age lies in greater time for exposure to injurious stimuli, such as hypertension, metabolic 
stress, or ischemia, over the life course. Additionally, the heart loses its capacity for repair, meaning that 
with repeated injury, the cumulative burden of stress is elevated, increasing the risk of disease[8]. Thus, it 
makes sense that older patients would have greater impairment of cardiac reserves and elevated risk of 
disease.

With advanced age, the heart becomes hypertrophic, defined as abnormal enlargement, or thickening, of the 
heart muscle[9], largely because of an increase in ventricular myocyte size[10]. Elevated collagen levels and 
non-enzymatic cross-linking render collagen stiffer and also contribute to the ventricular thickness and 
tension[11,12]. This fibrotic process impairs ventricular function and reserve[13,14], resulting in impaired 
diastolic function[15]. Systolic function is typically preserved in healthy aging; however, systolic reserve is 
often diminished, resulting in a heart unable to increase contraction to meet metabolic demand. The 
mechanisms which underlie these changes in age-related cardiac function will be discussed in more detail 
below, with attention to the sex differences that underlie these changes in structure and function.

Sex differences in the aging heart and age-related cardiac disease
Sex-related differences in cardiac structure and function have been reported in several clinical studies[16-18]. 
Healthy women and men have different chamber dimensions and functions, even after indexing for body 
size. On average, females have a smaller left ventricular (LV) chamber with approximately 10% less LV mass 
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than males, even after indexing for body size by body surface area[19]. Since women have smaller LV 
chambers and accordingly lower stroke volumes, a higher resting heart rate maintains a similar cardiac 
output to men. Women also have higher systolic and diastolic LV stiffness than men at a given age, and 
these differences are more prominent with aging, where steeper increases in LV stiffness are seen in women 
compared to men[20]. Cardiac contractility is well preserved in women but declined in men after age 50[21]. 
These sex differences in function with age are also demonstrated pre-clinically, where animal studies show 
that systolic function declines with age in males but not in females[22,23]. Sex differences in the aged heart are 
also evident in cellular studies. Male cells contract more strongly and rapidly than female cells[24,25], driven 
likely both by differences in sarcomeric protein and calcium-handling function[24]. Even though the number 
of cardiomyocytes is similar between sexes at birth[26], female cardiac myocytes are less likely to undergo 
apoptotic cell death compared to male myocytes, resulting in an elevated risk for cardiac myocyte loss in 
male hearts[27]. Indeed, this observation is supported by a recent single-cell sequencing study which reported 
that human female hearts contain a significantly higher percentage of ventricular cardiomyocytes than male 
hearts at middle to early older age[28]. Together, current evidence clearly shows sex-specific differences in 
cardiac aging at the cellular, anatomical, and functional levels [Figure 1].

Sex differences in cardiac aging likely contribute to different age-related cardiac pathogenesis observed in 
clinical populations [Table 1]. Older men are more likely than older women to develop heart failure with 
reduced ejection fraction[29]. Women, on the other hand, are more likely to develop heart failure with 
preserved ejection fraction (HFpEF)[30,31], characterized by increased wall thickness and diastolic dysfunction 
with little or no reduction in ejection fraction. Men are more prone to ventricular arrhythmias[32,33]. Men are 
also at higher risk for coronary heart disease at younger ages[34], but women surpass men with age, and 
experience worse outcomes with myocardial ischemia, resulting in higher mortality and poorer quality of 
life[35-37]. In valvular heart disease, degenerative mitral regurgitation impacts a significant proportion of 
elderly women, particularly those with comorbidities[38]. While sex differences in cardiac physiology likely 
contribute to these clinical differences (discussed below), risk factors also vary between aged men and 
women, which contribute to different disease pathogenesis. For example, obesity, hypertension, and 
diabetes are highly prevalent in women with HFpEF, while the underlying cause of heart failure in men 
tends to be ischemia and coronary artery disease[39]. The contributions of these risk factors to the sex-
specific development of cardiac aging are still being elucidated.

Sex differences in cardiac fibrosis in the aging heart
Both aging and diastolic dysfunction are characterized by elevated ventricular stiffness and deposition of 
extracellular matrix (ECM) proteins, thus cardiac fibrosis has been pursued by several research groups[40] as 
a mechanism of age-related heart disease. Indeed, fibrosis is associated with ventricular compliance and 
impaired passive filling of the LV[41,42]. Age-related alterations in cardiac ECM are sex-dependent, with aged 
male rat hearts more fibrotic than female hearts[43]. In human imaging-based studies, myocardial fibrosis is 
more pronounced in the aging male heart than the female heart[44,45].While the expression of collagen in 
human hearts did not differ between sexes, regulators of collagen metabolism differed between sexes[46]. 
Collagen types I and III were lower in young women than young men, but with age, the trend reversed, and 
women expressed higher collagen I and III compared to men[47]. Recently, it was reported that collagen I is 
the predominant type in the aged male heart, whereas collagen III was the main component in the aged 
female mouse heart[48]. Moreover, the authors correlated these sex-specific differences to sex-specific 
regional deposition of fibrosis, with males being more likely to undergo apoptosis and concomitant reactive 
interstitial fibrosis compared to females. In line with these studies, unpublished data from our lab suggests 
that the development of fibrosis with aging occurs in a temporally distinct manner in male versus female 
mice. We assessed collagen accumulation by Picro-Sirius red staining in the LV in mice from 4 distinct age 
groups: juvenile (4 weeks), adult (4-6 months), middle-aged (12 months), and aged (18 months) [Figure 2]. 
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Table 1. Common age-related cardiac diseases that exhibit sex-specific differences

Sex differences Ref.

Heart failure HFrEF more prevalent in men 
HFpEF more prevalent in women 
Women have more comorbidities, more likely to die with HFpEF

[29,30,31]

Ventricular arrhythmias More prevalent in men [32,33]

Ischemic heart disease Higher risk for development of disease in men at younger age 
Worse outcomes and higher mortality for women following MI at older age

[29,35-37]

Valvular disease Aortic regurgitation more prevalent in men 
Degenerative mitral valve disease more prevalent in elderly women (> 80 years)

[38]

HFrEF: Heart failure with reduced ejection fraction.

Figure 1. Sex-specific cardiac aging in male and female with respect to changes in major sex hormones testosterone and estrogen. While 
aging is characterized by ventricular hypertrophy, fibrosis, and changes in ventricular function, several mechanisms are more 
pronounced in the male heart compared to female. For example, the aged male heart demonstrates eccentric remodeling, systolic 
dysfunction, and lower adrenergic sensitivity as opposed to aged female heart, which demonstrates diastolic dysfunction and concentric 
remodeling. While some of these changes likely coincide with temporal changes in sex hormones, others are likely regulated by non-
hormonal changes, or occur via different temporal patterns in the male and female heart.

Quantification of fibrosis showed that fibrotic content increases earlier in life for males, while this process 
was temporally delayed in females. When we analyzed the expression of key pro- and anti-fibrosis genes, we 
found that pro-fibrosis genes are upregulated in younger hearts of both sexes, and gradually decline with 
aging. Specifically, the expression of collagen I was higher in juvenile and adulthood and decreased in the 
aged female heart. In contrast, male hearts showed a decline in collagen I expression after juvenile-hood in 
mice[49]. On the other hand, the expression of anti-fibrotic genes gradually decreased with age, supporting 
the notion that accumulation of fibrous connective tissue in cardiac ECM is caused by slower removal of 
ECM components rather than due to increased deposition of fibrotic proteins into the matrix. These data 
suggest that reduced collagen degradation may be more important than increased de novo collagen synthesis 
in the pathogenesis of aging-associated fibrosis in a sex-specific manner. While activation of pro-fibrotic 
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Figure 2. Fibrosis in the male and female heart across the life course. Collagen accumulation was assessed by picro-sirius red in LV in 
mice from 4 distinct age groups: juvenile (Juv; 4 weeks), adult (4-6 months), middle-aged (12 months), and aged (18 months) mice of 
both sexes. Quantification of fibrosis demonstrates that fibrotic content increases earlier in life for males, while females show relatively 
delayed fibrosis later in life. (A) Representative images; (B) quantification of fibrosis content in male and female samples. In male LV, 
fibrotic content was significantly higher in adult, while in female, fibrosis was not significantly elevated until middle age. n = 3/group; (C) 
expression of pro- and anti-fibrosis genes occurs in a sex-dependent manner with aging. Blue: male; pink/red: female.

genes is considered to be a primary pathway for the development of fibrosis, newly emerging data consider 
disruption of anti-fibrotic pathways as also essential in this process. It appears that the fibrotic process 
occurs via different temporal trajectories by sex. Future studies which utilize life-course approaches, and/or 
aim to understand the differences in animals of juvenile and middle ages will yield insight into the temporal 
nature of these sex-specific differences in cardiac aging. Understanding the mechanisms by which male and 
female hearts become fibrotic with advanced age is important for the identification of anti-fibrotic 
therapies- a large unmet clinical need.

Sex differences in aging at the cardiac myofilament
Even though whole cell contraction and relaxation are reliant on coordination from a myriad of regulatory 
processes in cardiomyocytes, the most basic contractile unit of the cardiomyocyte is the sarcomere. 
Sarcomeric protein interactions underlie contraction and relaxation, and thereby different protein isoforms 
or post-translational modifications on specific residues of sarcomeric proteins lead to significant differences 
in duration, rates, and intensity of contraction and relaxation. Simplistically, identifying key differences that 
occur at the level of the sarcomere between males and females as they age will provide the basis to 
understand larger, whole organ nuances and thereby provide therapeutic targets to modify aging-induced 
alterations.
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It is clear that myofilament function is altered with age both in humans and animal models[50-58] but much 
like other cellular systems in aging, there is high heterogeneity in aging myofilament proteins. While 
conclusive functional changes are complicated by differences in animal models, age of the models, as well as 
differences in techniques, aging seems to modify passive stiffness, force generation, and calcium sensitivity, 
as well as prolong relaxation of the myofilament. However, it is clear that nuances in experimental design as 
well as, importantly, sex and health of the models warrant careful investigation and comparison. With this 
in mind, a study by Kane et al.[54,59] demonstrates the importance of incorporating a frailty assay or some 
assessment of whole-body aging as heterogeneity in biological aging clearly exists and likely confounds 
conclusions about myofilament modifications due to age. Moreover, this particular study makes it clear that 
the markers providing important information about aging may differ by sex since male animals had a 
significant correlation in their frailty scores to key modifications in their myofilament proteins, whereas 
female animals did not.

Of note, aging can induce altered myofilament function through either expression of different isoforms or 
through differential post-translational modifications. Nance et al.[60] reported that sarcomere lengthening is 
impaired in aged cardiomyocytes, which alters the length-dependent activation. One sarcomeric protein 
that regulates sarcomere length and contributes, in part, to the dynamics of sarcomeric lengthening is titin. 
Interestingly, a recent study determined that in male mice or humans, titin isoforms were not altered with 
age. However, phosphorylation at specific sites on titin were differentially modified in male mice[61]. 
Similarly, phosphorylation of serine 44 of cardiac troponin I is elevated, and contractile function decreased 
in aging rats[57]. Moreover, numerous reports suggest that myofilament proteins are differentially modified 
in males and females with age[54]. It is clear that sex hormones differentially impact myofilament 
function[62-69]. However, reports are conflicting with the overall effect of estradiol itself on myofilament 
function and modifications. Most notably, several studies demonstrate increased calcium sensitivity in 
response to acute loss of estradiol or low estradiol levels. However, chronic loss of estradiol leads to 
decreased myofilament calcium sensitivity. These contrasting reports suggest that changing estrogen levels 
at pivotal aging events such as perimenopause represent a different regulatory milieu than pre-menopause 
or even menopause. Decreased testosterone also has been shown to modify myofilament function, inducing 
prolonged relaxation and diastolic dysfunction in aged animals[62]. In line with this, orchiectomized male 
rats demonstrate decreased active force and slower cross-bridge cycling with higher expression of beta-
myosin heavy chain and lower phosphorylation of key sarcomeric proteins[69]. However, an important 
consideration is that the majority of the sex hormone studies have been completed in adult or young 
animals and not in old animals. Therefore, while it is clear that estrogen and testosterone impact 
myofilament post-translational modifications, determining how age itself impacts myofilament along with 
hormonal changes is critical.

MECHANISMS OF SEX DIFFERENCES IN CARDIAC AGING
Sex differences in cardiac disease have long been attributed to estrogen, a hypothesis which largely stems 
from the loss of cardioprotection in women following menopause. While estrogen undoubtedly plays a 
significant role in the cardiac disease phenotype between men and women, the contribution of other sex 
hormones as well as non-hormonal mechanisms have emerged as critical regulators of cardiac disease and 
will be the focus of this section.

First, to help guide our discussion, we begin with a conceptual framework for understanding the basis of sex 
differences. This model was put forth by Arnold[70] to guide the study of sex-based differences in physiology 
and disease. This framework suggests that there are three causes of sex differences. First are the effects that 
are due to activation of gonadal steroid hormones, such that shortly after removing them, [i.e., by 
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Ovariectomy (OVX) and orchiectomy] the effects are attenuated. Several effects of gonadal steroid 
hormones persist following gonadectomy, and these are referred to as long-term organizational effects of 
hormones- i.e., the persistence of internal and external genitalia. Lastly, even following gonadectomy, there 
remain differences that cannot be explained due to steroidal hormones, but are rather due to the effects of 
sex chromosome genes acting outside the gonads. This framework leads to a relatively standard strategy for 
understanding sex-based differences and identifying sex-based factors-1) remove the gonads and quantify 
phenotypic changes. If they are present, identify which hormone (estrogens, testosterone, progesterone) 
drives the phenotype. If sex differences persist following gonadectomy, then organizational effects and non-
hormonal effects should be studied. While this paradigm is simple and straightforward and certainly 
provides mechanistic insight, to date, the bulk of what is known about sex differences has focused 
predominantly on estrogen, with sex chromosome effects rarely investigated. We propose that a 
comprehensive analysis of sex hormone and chromosome-regulated mechanisms will yield a greater 
understanding of sex differences in cardiac aging and disease.

Sex hormone-mediated differences in cardiac aging
In premenopausal women, 17β-estradiol (E2) produced by the ovaries is the primary circulating estrogen. 
High concentrations of E2 act primarily as an endocrine factor on distal tissues. Serum estradiol 
concentrations are low in adolescence and increase at menarche. In adult women, estradiol fluctuates with 
the menstrual cycle, ranging from 100 pg/mL in the follicular phase to about 600 pg/mL at ovulation. 
Estradiol is high during pregnancy, and then after menopause, concentrations fall to similar values or lower 
to those in age-matched men (5 to 20 pg/mL). Following menopause and in men, extragonadal sources are 
responsible for the low levels of E2 production, largely acting in paracrine roles. While aging female rodents 
do not undergo true menopause, they do become reproductively incompetent or senescent with advanced 
age, a state referred to as estropause. Estropause is characterized by persistently lower estrogen, varying 
length of the estrous cycle, with eventual cessation of cyclicity around 12-14 months of age[71]. Ovariectomy 
of aged animals supports the loss of estrogen with aging, as animals do not undergo changes in metabolic 
function with ovarian estrogen removal, nor do significant changes in cardiac phenotype occur with 
removal of the ovaries[72]. However, OVX and aging are not synonymous. While they both are characterized 
by loss of ovarian estrogen, as discussed above, the aged heart is phenotypically distinct from the adult- both 
in the basal as well as the stressed state. Thus, we propose that future work dissect the impact of estrogen 
from aging on cardiac function using approaches which uncouple biological age from ovarian estrogen 
status.

Most data regarding estrogen signaling refers to E2. E2 is inversely associated with cardiovascular disease 
events in postmenopausal women, with women maintaining high estrogen levels having lower heart disease 
risk[73]. A wealth of data has demonstrated beneficial effects of E2 treatment on the heart, including reduced 
fibrosis, attenuated oxidative stress, improved mitochondrial function, and attenuation of cardiac 
hypertrophy[74]. Estrogenic effects in the heart are due to signaling through estrogen receptors α and β (ERα 
and ERβ) as well as G-protein-coupled ER (GPER). It is well-accepted that the myocardium is responsive to 
circulating androgens and estrogens, due to the expression of ERα and ERβ in the myocardium, likely in 
multiple cell types including myocytes and cardiac fibroblasts[75]. E2 binds ER, the complex internalizes, 
translocates to the nucleus, and activates transcription of estrogen-responsive genes. In addition to the 
protection afforded by E2 in vitro and in pre-clinical models of cardiac disease, the beneficial role of E2 is 
also supported by studies that show depletion of ovarian estrogen by OVX reverses the protective effects of 
E2[76]. These gain and loss of E2 studies, along with the epidemiology data showing clear loss of 
cardiovascular disease protection with menopause, led to the early hypothesis that restoration of E2 with 
aging would reduce heart disease morbidity and mortality. However, early studies to give back E2 to the 
aged heart were not successful[77]. Aging has been suggested to diminish the ability of estrogen to be 
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protective, and a “timing” hypothesis for estrogen therapy has emerged[78]. In aged spontaneously 
hypertensive rats, E2 delivery did not attenuate hypertrophy or molecular signatures of the failing heart, 
such as myosin heavy chain expression[78]. The authors suggested that this was in part due to not only 
reduced E2 synthesis but also impaired estrogen metabolism, given differences in expression of 17β-HSD, 
which catalyzes the reduction of weak estrogens into potent estrogens like E2. Indeed, estrogen metabolites 
(2-hydroxyestradiol and 2-methoxyestradiol) are also emerging as regulators of cardiac function, likely 
through some similar mechanisms as E2. Age-related changes in estrogen receptor and GPER expression 
have also been studied as a mechanism to explain the loss of cardioprotection with age. While cardiac GPER 
expression appears to increase with age in mice of both sexes, cardiac ERα decreases with age in females but 
remains unchanged in males[79]. Together, while it is clear that E2 is cardioprotective and loss of E2 occurs 
with advanced age, the mechanisms by which E2 protects the heart, how this protection declines with age, 
and effective therapeutic strategies for interventions against age-related declines have yet to be fully 
elucidated.

Testosterone decreases with advanced age, not only in men[80], but also in women[81]. Age-dependent 
reductions in testosterone are also evident in aged male rodents[82]. Considerable evidence has emerged that 
low testosterone may therefore also contribute to increased risk for heart disease with aging[73,83,84]. The link 
between testosterone and heart disease is particularly strong for diseases of impaired contractility such as 
heart failure. The biological effects of testosterone occur through androgen receptors expressed in the heart, 
at least in cardiac myocytes[85]. Binding of androgens causes transcriptional regulation of androgen-
responsive genes. However, similar to estrogen, non-genomic actions of testosterone have also been 
described.

Mechanistic understanding of androgens on cardiac function comes from studies of gonadectomy. In young 
mice, bilateral orchiectomy attenuates contractile function[86]. Long-term withdrawal of testosterone slows 
relaxation[62]. On the other hand, epidemiological studies of anabolic steroid users indicate that high levels of 
exogenous testosterone negatively impact the heart[87]. The long-term effects of modest or physiological 
levels of testosterone on the heart remain unsettled, as evidenced by the recent initiation of a clinical trial to 
determine the effects of long-term testosterone treatment on cardiovascular outcomes[88]. The impact of 
gonadectomy in the aging heart is not clear but likely differs from those in the young, given that 
gonadectomy in aged mice did not change testosterone or measures of muscle mass - findings contrary to 
those reported in younger male mice[89].

In addition to direct androgen effects, testosterone also impacts cardiac function due to the fact that 
estrogen biosynthesis is dependent on testosterone availability. Testosterone can be converted to E2 by 
aromatase, expressed in non-gonadal tissue. While the expression of aromatase in the heart is 
contentious[79,90], even low expression may meaningfully contribute to E2 synthesis in a setting of low 
systemic concentrations. E2 produced by aromatase has been speculated to act locally in a paracrine or 
autocrine manner, rather than as a hormone as when gonadal E2 synthesis is intact. While the cellular 
location of aromatase expression has not been fully described, there is some evidence that it is 
predominantly expressed in the coronary vasculature, with lower expression in cardiac myocytes[91]. To date, 
the expression of aromatase in cardiac fibroblasts is not known. Cardiac localized aromatase likely controls 
the balance between testosterone and estrogen, permitting sex steroid regulation of cardiac function. In 
support of this hypothesis, deletion of aromatase profoundly alters the cardiac stress response[90]. 
Understanding the contribution of aromatase to E2 synthesis in the postmenopausal and aging heart is an 
area ripe for future research.
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As alluded to above, dissection of aging from loss of gonadal hormones with advanced age is not yet clear. 
That is- are age-related changes in cardiac function due to natural aging, due to age-related declines in 
estrogen, or both? Clinical studies of women in different phases of the menstrual cycle as well as peri-, 
menopausal, and postmenopausal women, suggest that while sex hormones (especially E2 and FSH) 
regulate arterial stiffness, the effects are largely driven by age[92]. In support of this hypothesis, OVX did not 
cause independently cause cardiac remodeling and dysfunction in rats, but rather aging resulted in diastolic 
dysfunction and mild systolic impairment[93]. Together, these findings suggest that associations between 
hormones and cardiovascular function are likely different at different ages or reproductive stages. These 
types of studies should be investigated by removal of gonads in aged mice and quantifying cardiac function 
in aged animals.

Sex chromosome mediated mechanisms of cardiac aging
We recently reported significant differences in the cardiac transcriptome that are apparent before the onset 
of major sex hormones and sexual maturity, as well as in the hearts of reproductively incompetent aged 
females[49]. The cardiac proteome also appears to develop differently between males and females, 
independent of sex hormones[94], given the robust differences in proteomics in mice at embryonic day E9.5, 
with gonadal development occurring at day E11. When sex hormones cannot explain sex differences, either 
due to the persistence of sex differences post removal of gonads, it is logical to conclude that non-hormone 
mediated mechanisms must be contributing.

Clinical genomics studies suggest that age-related cardiac disease develops in conjunction with sex 
chromosomes. Polysomy of the Y chromosome is associated with elevated CVD mortality due to 
atherogenic lipid profiles[95]. In addition, women with monosomy X (Turner Syndrome) also have an 
elevated risk for coronary artery disease[96]. However, in humans, sex chromosome aneuploidy conditions 
(XO and XXY) are also associated with aberrant hormonal levels, making it difficult to separate 
chromosomal effects. To circumvent this problem, several mouse models have been generated which permit 
the dissection of sex chromosome differences from gonadal hormones. For the purposes of this review, we 
will discuss two of such models, though we refer the reader to reviews on sex hormones and chromosomes 
in CVD for more details[97]. To dissect the contributions of sex hormones from chromosomes, mice have 
been generated in which sex chromosomes are separate from gonadal hormones. In the case of the four core 
genotype (FCG) mouse, two separate mutations delete the testis-determining gene (Sry) from the Y 
chromosome or insert it into an autosome. This results in an XX female mouse, an XY- mouse which 
develops ovaries and subsequently ovarian hormones, as well as XY-Sry and XXSry transgenic mice that are 
gonadal males. If XX and XY mice differ despite similar hormone levels, then sex chromosomes are likely 
responsible for the phenotype. The XY* mouse is the other common model, where XY* mice possess the Y* 
chromosome, which has an aberrant pseudoautosomal region with permits crossing over with X 
chromosome during meiosis. This produces abnormal recombination of X and Y. Mating XY* males to XX 
females produces progeny that are gonadal males or females, each with one vs. two X chromosomes.

Given the relatively recent emergence of these models, cardiac and certainly aging studies utilizing them are 
sparse. In the FCG mouse model, XX mice, compared to XY mice, had more beneficial lipid profile in the 
form of elevated high-density lipoprotein[98]. The magnitude of hypertension induced by angiotensin II is 
greater in gonadectomized XX mice compared to XY[99]. In the XY* mouse model, at baseline at two months 
of age, all mice had a similar cardiac function, but X mice have higher vulnerability to I/R injury compared 
with XY* mice, due to the number of X chromosomes rather than the absence of the Y chromosome[100].
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Collectively, it is clear that neither hormones nor chromosomes alone are responsible for sex differences in 
cardiac disease and aging. Rather, the two mechanisms likely work separately as well as through overlapping 
or intersecting mechanisms to regulate cell and organ-level physiological and molecular differences. A 
recent publication using the FCG model quantified the cardiac proteins under the regulation of hormones 
(proteins that segregated with ovaries and testes) versus those that were chromosomally controlled 
(segregated with chromosomes). While the authors identified 519 under hormonal control and 159 proteins 
under chromosomal control, they also identified a subset that involved a combination of chromosome and 
hormonal control[94]. They speculated that these genes are regulated by both mechanisms or, could be driven 
by chromosomes but opposed by hormones. In the latter interpretation, male and female disease 
phenotypes would be similar in presentation, but the mechanism of development would vary by sex. In this 
case, treatment of the disease could also vary between males and females. With respect to aging, as briefly 
discussed above, dissecting chromosomes and age-related changes in hormones is necessary to fully 
elucidate sex differences in the heart. In a series of experiments aimed at understanding how gonadal 
hormones and chromosomes influence hypertension, adverse sex chromosome effects which contributed to 
hypertension were exacerbated by the removal of gonadal estrogen by OVX. That is, the interaction between 
the X chromosome and estrogen could contribute to hypertension in postmenopausal women[99]. To date, 
these types of investigations are incredibly limited and warranted to dissect the mechanisms of cardiac aging 
in male and female hearts.

SEX DIFFERENCES IN THE CARDIAC STRESS RESPONSE VIA THE ADRENERGIC 
CASCADE
While sex differences in healthy aging are important, as discussed above, so are sex differences in the aged 
heart response to stress and/or ability to tolerate stress. The aging heart is well-characterized by a 
diminished stress response, resulting in elevated morbidity and mortality compared to younger animals. In 
young models, the female advantage is also well-characterized, with young females being at less risk of 
developing heart disease compared to males of similar age[101]. The female advantage declines with advanced 
age, as evidenced by a steeper rate of heart disease risk increase in women older than 50 compared to 
men[102]. However, given the assumption that sex differences disappear with estro/menopause, differences in 
the aged male and female heart to cardiac stress have been sparsely studied. These studies are also 
complicated by the diminished ability of aged cohorts to survive cardiac insult, further contributing to a lack 
of sex difference studies in the aging heart.

In response to cardiac stress, compensatory mechanisms are engaged in an effort to maintain cardiac 
function[103]. One of these major compensatory mechanisms is the activation of neuro-hormonal system, 
largely mediated by the stimulation of adrenergic receptors (AR) by catecholamines[104,105]. Activation of AR 
and downstream signaling increases calcium sensitivity and phosphorylates myofilament contractile 
proteins, shifting calcium affinity and contractile dynamics, in an effort to increase cardiac work. The 
human heart expresses two broad classes of adrenergic receptors, the α-adrenergic and the β-adrenergic 
families. Each of these families can be further subdivided into subclasses, but since the β-adrenergic receptor 
(β-AR) cascade has been the focus of active research in the context of cardiac function, we will focus on sex 
differences in the β-AR and changes in this cascade with advanced age.

β-AR are members of the G protein-coupled receptor (GPCR) superfamily of receptors. There are three 
major subtypes of β-ARs identified in the human heart, β1-, β2-, and β3-AR[106-108], and of these, β1-AR and β
2-AR have earned the greatest interest due to their role in myocardial contraction. In brief, activation of the 
cascade starts with the binding of β-AR agonist, which causes a conformational change in the receptor. A 
primary effect of the β-AR is stimulation of adenylyl cyclases, multiple subtypes of which are expressed in 
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human cardiac tissues. Adenylyl cyclases catalyze the conversion of ATP to the second messenger cAMP, 
which in turn binds to the regulatory subunits of protein kinase A (PKA). PKA phosphorylates serine and 
threonine residues on a number of proteins, thereby affecting a spectrum of cellular processes ranging from 
contractility to global gene expression patterns. Important PKA targets that acutely modulate myocardial 
contractility are β-ARs, L-type Ca2+ channels, the sarcoplasmic reticular Ca2+ATPase inhibitory protein, 
phospholamban, and troponin I (TnI)[109]. Once the incoming signal is transduced, termination of the signal 
is accomplished to balance activation and deactivation. β-ARs deactivation is mainly accomplished through 
the actions of GPCR kinases (GRKs)[110]. GRK recruits β-arrestins, which uncouple the receptor from G-
proteins and promote internalization and down-regulation of the receptor[110].

Adrenergic regulation of cardiac function with aging
Age-related declines in the responsiveness of adrenergic activation are well-established[111]. Decline in 
sensitivity to catecholamine stimulation has been attributed to high levels of circulating catecholamines, 
which lead to downregulation of β-adrenergic receptor and pathway activation[105,112,113]. Diminished β-
adrenergic receptor sensitivity is called “β-adrenergic desensitization” and is characterized by altered 
ventricular inotropic reserve and exercise intolerance[111,114]. The underlying mechanisms have not been fully 
elucidated, but evidence suggests that fewer β-adrenergic receptors, other components of the β-adrenergic 
signaling pathway, or a combination play a role[111,112,114,115]. In addition to adrenergic desensitization, aging 
also influences the cardiac response to adrenergic-mediated therapeutics. Stimulation of AR with receptor 
agonists has been reported to have a deleterious effect on cardiac function in patients over the age of 65[116]. 
Although to date, no large clinical trial has specifically set out to examine β-blockade in older patients, a 
small uncontrolled observational study with patients with a mean age of 78 noted twice the rate of 
withdrawal and no improvements in symptoms of chronic heart failure[117] compared to younger patients. 
Given the strong association of advanced age with heart disease risk, understanding the impact of age on 
adrenergic therapeutics such as β-blockade is warranted.

Sex differences in the cardiac adrenergic cascade 
In addition to differences with age, sex differences also exist in cardiac function in response to AR 
stimulation. Female patients maintain cardiac output through changes in heart rate[118], while male hearts 
tend to utilize changes in Frank-Starling mechanisms to increase cardiac output. Animal studies also reveal 
sex differences in AR stimulation and cardiac performance. Data from our group in a model of 
isoproterenol-mediated adrenergic activation support this observation, with a significant increase in cardiac 
output in adult females, driven by higher heart rate alongside unchanged stroke volume. Isoproterenol also 
resulted in sex-specific changes in cardiac structure, function, and gene expression across age and sex[119], 
sex differences which were differentially changed with age. Previous reports of catecholamine stimulation in 
humans demonstrated that adrenaline infusion in young (average age 30) and older (average age 60) adults 
caused similar increases in heart rate, but larger increases in stroke volume and ejection fraction in younger 
compared to older subjects[120]. Additionally, young males demonstrated a greater increase in heart rate than 
young females in response to adrenergic receptor stimulation. Together, these data suggest that with age, 
males demonstrate exacerbated decline in adrenergic-mediated function.

Despite the well-established observation that declines in adrenergic activity occur with aging and disease 
and that β-ARs are key pharmaceutical targets, only a few studies have investigated mechanistic sex 
differences, and the results of these studies have been inconsistent[121-123]. Gonadal hormones influence the 
response to the β-blockers in animal models. In a rat study, β-blocker treatment was effective only in males, 
but not in gondally intact females[124,125]. When it comes to the comprehensive assessment of the adrenergic 
cascade, the majority of the studies investigating sex differences have assessed the contractile response[121,126] 
with a smaller number of studies aimed at understanding calcium handling[127,128]. For instance, when the 
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expression and abundance of calcium handling proteins are compared between sexes, female rats showed 
significantly higher levels of these proteins[129]. We recently reported that β1-AR and β2-AR expression and 
several downstream AR targets were altered in a sex- dependent manner in response to isoproterenol. While 
expression of β2-AR was several fold increased in aged male hearts in response to AR stimulation, it 
remained unchanged in the aged female[119]. Sex differences have been reported in the activity of adenylyl 
cyclases and cAMP production[126,127], as well as the activity of phosphodiesterases in cAMP breakdown[130]. 
These studies report that female myocytes have lower levels of basal cAMP. If basal cAMP is lower in 
females, this would be expected to cause less PKA activation. Indeed, downstream measurements of PKA 
activity show sex differences, in such that stimulation of β-AR increased Ca2+ currents, Ca2+ transients and 
contraction in myocytes from females in comparison to males[130]. Testosterone inhibits phosphodiesterase 
activity in the rat heart[131]. The inhibition of phosphodiesterase can potentially explain higher levels of basal 
cAMP in male hearts compared to females. While these previous findings clearly demonstrate that sex 
differences exist in the activation of the adrenergic cascade, and that these differences change with age, it is 
clear that more work is necessary to investigate mechanistic differences in the AR cascade. Given the 
widespread use of pharmacological agents which target the adrenergic cascade, studies utilizing sex and age 
as biological variables are needed.

CONCLUSIONS
Sex differences underlie many facets of cardiac aging, including prevalence, severity and manifestation and 
susceptibility to a variety of heart diseases. However, despite the observation that men and women age 
differently (as typified by premenopausal cardioprotection), the mechanisms of sex-specific cardiac aging 
still remain unclear. Understanding the contributions of sex and age, as well as their complex interplay in 
the context of cardiac health, represents a fundamental step toward sex-and age-specific medicine and the 
development of more effective options to prevent and treat heart disease for both male and female patients.
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