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Abstract
Androgen is an important factor in the occurrence and progression of prostate cancer. The principal clinical 
strategy is androgen deprivation therapy (ADT). However, progression to castrate-resistant prostate cancer 
(CRPC) is almost inevitable to occur after ADT. One of the key mechanisms is the intertumoral synthesis of 
androgen where 3β-hydroxysteroid dehydrogenase isoenzyme-1 (3βHSD1, encoded by HSD3B1) catalyzes the rate-
limiting step. A germline missense-encoding variant of HSD3B1(1245A>C, rs1047303) has been the focus of 
research because HSD3B1(1245C) works as an adrenal-permissive allele and encodes a more stable enzyme that 
promotes the synthesis of androgen. Several studies were performed to explore the role of HSD3B1(1245C) in the 
development of CRPC and the outcome of clinical management. Thus, we searched the published research articles 
using the keywords “prostate cancer” and “HSD3B1”, in PubMed and Embase database. After reviewing the 
abstracts and full articles, 16 original research articles from 45 search results were finally selected and reviewed. 
Based on the current evidence, HSD3B1(1245C) is proposed to accelerate ADT resistance and the development of 
CRPC. It is also associated with a poorer prognosis of PCa treated with ADT. However, due to conflicting results, 
the association between HSD3B1(1245C) and the effect of next-generation hormone therapy (i.e., abiraterone) for 
patients with CRPC is not clear enough. In conclusion, HSD3B1(1245C) has value for predicting the outcome of PCa 
and potential to be involved in therapeutic decision making.
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INTRODUCTION
It is widely accepted that androgen and androgen receptor (AR) play an important role in the occurrence 
and progression of prostate cancer (PCa)[1]. Androgen deprivation therapy (ADT) via medical or surgical 
castration, which has been applied since 1941[2], is the principal therapeutic strategy to advanced prostate 
cancer. The general clinical efficiency of ADT depends on its blockage of gonadal androgen[3-5]. However, 
the development from castrate-sensitive prostate cancer (CSPC) to castrate-resistant prostate cancer 
(CRPC) is eventually inevitable[4]. One of the key mechanisms is the intertumoral synthesis of androgen, 
including testosterone and dihydrotestosterone (DHT), which originate from adrenal precursor steroids, 
such as dehydroepiandrosterone (DHEA)[6,7]. The androgen synthesis is considered to induce the 
reactivation of AR. When the disease finally progresses to the state of CRPC, it becomes highly lethal. To 
solve this clinical problem, next-generation hormone therapies were introduced nearly a decade ago[8]. Since 
then, the PCa prognosis is noted to be largely improved by several new drugs such as docetaxel (a 
microtubule inhibitor), abiraterone (a selective inhibitor of cytochrome P450 17A1 (CYP17A1), which is a 
key enzyme in androgen synthesis), and enzalutamide (a targeted androgen receptor inhibitor)[9-11].

In terms of the intertumoral androgen synthesis, several key enzymes and genes in the synthetic process are 
identified as potential targets for diagnosis or treatment. One of them is 3β-hydroxysteroid dehydrogenase 
isoenzyme-1 (3βHSD1, encoded by HSD3B1), which catalyzes the rate-limiting step in the metabolic 
conversion from DHEA to testosterone and DHT in the adrenal gland[12]. A specific germline missense-
encoding variant of HSD3B1(1245A>C, rs1047303) leads to a divergence of enzyme level and downstream 
androgen synthesis. HSD3B1(1245A) is known as an adrenal-restrictive allele as it codes an enzyme that is 
degraded more rapidly, while HSD3B1(1245C), an adrenal-permissive allele, codes a stable enzyme resistant 
to proteasomal degradation that promotes robust conversion from DHEA to DHT[13,14]. A series of studies 
indicated that genetic variants in HSD3B1 are associated with the progression of PCa and resistance of 
ADT. In this review, the homozygous variant genotype is referred to as HSD3B1 (CC), while the 
heterozygous genotype and homozygous wild type are referred to as HSD3B1 (AC) and HSD3B1 (AA), 
respectively.

In this review, we summarize the published studies regarding the association between HSD3B1 and the 
clinical management of PCa, including both CSPC and CRPC. We also discuss the contemporary 
significance of HSD3B1 and its potential value in the therapeutic decision in PCa.

EVIDENCE SYNTHESIS
We searched the published research articles using the keywords “prostate cancer” and “HSD3B1”, in 
PubMed and Embase database. In total, 45 results were found. After review of the abstracts and full articles, 
16 original research articles were finally included in this review.

HSD3B1(1245C) promotes resistance to ADT and development to CRPC
Recently, plenty of evidence shows that PCa patients carrying HSD3B1(1245C) variant were more likely to 
become resistant to ADT and progress to CRPC. This variant was also reported to be associated with worse 
survival outcome for patients with PCa treated with ADT, especially for those with low-volume diseases.
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As shown in Table 1, since Ross et al.[15] first reported in 2008 that SNPs rs1870050 in CYP19A1 [hazard 
ratio (HR) = 0.60; P = 0.0007], rs1856888 in HSD3B1 (HR = 0.58; P = 0.0047), and rs7737181 in HSD17B4 
(HR = 0.70; P = 0.0096) were related to shorter time to progression, the role of HSD3B1 in PCa has been 
paid close attention by researchers because 3βHSD1 encoded by HSD3B1 is necessary for the synthesis of 
non-testicular testosterone or DHT. Wu et al.[16] in 2015 first summarized that HSD3B1(1245C) PCa is more 
likely to progress to CRPC, according to a retrospective study involving 85 patients with AA genotype and 
18 with AC genotype who were diagnosed as advanced PCa and underwent surgical castration. However, no 
significant disparity of overall survival time was shown related to HSD3B1.

Hearn et al.[17] reported that HSD3B1(1245C) is significantly associated with PCa resistance to ADT. As a 
multi-cohort study, they enrolled 443 patients treated with ADT after prostatectomy from three cohorts: the 
post-prostatectomy cohort from the Cleveland Clinic registry, the post-prostatectomy validation cohort 
from the Mayo Clinic SPORE registry, and the metastatic validation cohort from the Mayo Clinic metastatic 
prostate cancer registry. The frequency of variant was 26%-36%. In the primary cohort, compared with the 
AA genotype group, the CC genotype groups (HR = 2.4; P = 0.029) and the AC group (HR = 1.7; P = 0.041) 
were associated with worse progression-free survival (PFS). However, in the other two cohorts, CC showed 
the same significant effect on development to CRPC, while the association between the AC genotype and 
the progression of CRPC was not significant (HR = 1.1; P = 0.38). In addition, the variant allele was 
predictive to a worse overall survival.

Subsequently, a few studies came to similar conclusions. Agarwal et al.[18] retrospectively analyzed 102 
patients with metastatic CSPC accepting ADT. The frequency of variant was 31%. Compared with the PFS 
in the AA genotype group, in the CC genotype group, PFS was shorter (11 months vs. 21 months; HR = 
2.16; P = 0.046), while that in the AC genotype groups was similar (19 months vs. 21 months; HR = 1.04; P = 
0.86). Shiota et al.[19] also performed an analysis on a primary ADT cohort with 104 Japanese patients of 
metastatic CSPC where the frequency of variant was 5%. The results shown that patients with the CC 
genotype and the AC genotype were more likely to be resistant to ADT (HR = 2.34; P = 0.03) but had no 
significant difference for mortality.

Hearn et al.[20] furthered their studies on the basis of their original report. Instead of post-prostatectomy, 
focusing on patients undergoing ADT post-radiotherapy, the study proved that HSD3B1(1245C) was also 
associated with rapid development of metastases. Furthermore, analyses were performed on the E3805 
Chemohormonal Therapy Versus Androgen Ablation Randomized Trial for Extensive Disease in Prostate 
Cancer cohort which included patients with metastatic PCa undergoing ADT with or without docetaxel. 
They concluded that HSD3B1(1245C) was related to earlier development of CRPC (HR = 1.89; P = 0.02) and 
shorter overall survival (HR = 1.74; P = 0.045) in patients with low-volume disease but not in patients with 
high-volume disease[21].

The current clinical studies on the role of HSD3B1 in CSPC patients treated with ADT are discussed above. 
With regard to the effect of HSD3B1 (CC) for accelerating the resistance to ADT and progression to CRPC, 
the results of current studies are in agreement. A meta-analysis by Han et al.[22] confirmed this conclusion 
and also concluded that HSD3B1 had no association with mortality. Except the outcome in the primary 
cohort of the Hearn’s study in 2016[17], HSD3B1(1245C) was noted to have no impact on the mortality of 
CSPC. At a more fundamental level, Chen et al.[23] reported that HSD3B1 was marginally significantly 
associated with impaired survival outcome. Based on the study by Hearn et al.[21], the effect of HSD3B1 was 
only found in patients with low-volume PCa. It was difficult to derive a precise conclusion from the analysis 
for the overall cohort. In addition, it is worth noting that the association between the AC genotype and 
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Table 1. Summary of studies about the association between HSD3B1 variants and PCa treated with ADT

Study Medical management No. of Cases No. of Carriers Results Conclusions

Ross et al.[15], 2008* ADT 529 62 For TTP: 
HR = 0.58; 95%CI: 0.41-0.81; P = 0.0047

The polymorphism in HSD3B1 was associated with time to 
progression during ADT for PCa

Wu et al.[16], 2015 ADT 103 18 For incidence of CRPC: 
AC vs. AA: 100% vs. 64.7%; P = 0.003

Variant HSD3B1 associated higher incidence of CRPC

ADT 118 74 For PFS: 
CC: HR = 2.4; 95%CI: 1.1-5.3; P = 0.029 
AC: HR = 1.7; 95%CI: 1.0-2.9; P = 0.041 
For OS: 
CC: HR = 3.3; 95%CI: 1.3-8.3; P = 0.013 
AC: HR = 2.0; 95%CI: 1.1-3.7; P = 0.036

ADT 137 60 For PFS: 
CC: HR = 2.7; 95%CI: 1.2-5.9; P = 0.013 
AC: HR = 1.0; 95%CI: 0.7-1.7; P = 0.085

Hearn et al.[17], 2016

ADT 188 90 For OS: 
CC: HR = 2.5; 95%CI: 1.2-5.0; P = 0.013 
AC: HR = 1.5; 95%CI: 1.0-2.1; P = 0.036

Patients carrying variant HSD3B1 are more likely to fail 
with ADT and to have worse survival outcome

Agarwal et al.[18], 2017 ADT 102 52 For PFS: 
CC: HR = 2.16; 95%CI: 1.01-4.58; P = 0.046 
AC: HR = 1.04; 95%CI: 0.64-1.07; P = 0.86

HSD3B1 genotype CC but not AC, was associated with 
shorter PFS

Hearn et al.[20], 2018 ADT after radiotherapy 218 116 For time to metastasis: 
CC: HR = 2.01; 95%CI: 1.02-3.97; P = 0.045 
AC: HR = 1.19; 95%CI: 0.74-1.92; P = 0.48 
No significant differences in TTP or OS

Variant HSD3B1 was associated with shorter time to 
metastasis but not with death and progression risk

Shiota et al.[19], 2019 ADT 104 9 For PFS: 
CC/AC: HR = 2.34; 95%CI: 1.08-4.49; P = 0.03 
For OS: 
CC/AC: HR = 1.36; 95%CI: 0.52-2.92; P = 0.50

Variant HSD3B1 was associated with shorter PFS but not 
with death risk

Hearn et al.[21], 2020 ADT randomized plus 
docetaxel

475 270 For PFS: 
In low-volume disease group: 
CC/AC: HR = 1.89; 95%CI: 1.13-3.14; P = 0.02 
In high-volume disease group: 
CC/AC: HR = 1.10; 95%CI: 0.82-1.47; P = 0.52 
For OS: 
In low-volume disease group: 
CC/AC: HR = 1.74; 95%CI: 1.01-3.00; P = 0.045 
In high-volume disease group: 
CC/AC: HR = 0.89; 95%CI: 0.65-1.22; P = 0.48

Variant HAD3B1 was associated with higher risk of 
progression and death for patients with low-volume 
disease, but not with high-volume

Chen et al.[23], 2020 ADT 101 42 For OS: 
CC/AC vs. AA: 5.0 years vs. 6.5 years; P = 0.052

Variant HSD3B1 was marginally significantly associated 
with shorter OS

*Except for the study by Ross et al.[15] (rs1856888), all other studies investigated the variant rs1047303. ADT: Androgen deprivation therapy; TTP: time to progression; HR: hazard ratio; 95%CI: 95% confidence 
interval; CRPC: castrate-resistant prostate cancer; PFS: progression-free survival; OS: overall survival.
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survival outcome remains unclear. The effect of the AC genotype on promoting resistance to ADT was 
statistically significant in only one study[17]. In contrast, in the other two cohorts of Hearn’s study in 2016 
and the cohort in Agarwal’s study, no difference in overall survival was observed between the AC and AA 
genotype groups.

Impact of HSD3B1(1245C) on the other medical management is waiting to define
Since the function of germline variants in HSD3B1 was confirmed to promote the development of resistance 
to ADT, several works focused on how it influences the outcome when coming to the state of CRPC. It has 
been reported that HSD3B1(1245C) might have a negative effect on the overall survival of CRPC. However, 
there are contradictions in the existing results about its association with the response to medical 
management, such as abiraterone and enzalutamide, in the state of CRPC.

Stangl-Kremser et al.[24] and Chen et al.[23] both summarized the association between HSD3B1(1245C) and 
survival outcome of patients with CRPC via genetic sequencing of prostate tissue. The former concluded 
that there was no relation between HSD3B1(1245C) and survival outcome of CRPC[24]. Similarly, the latter 
reported that HSD3B1(1245C) was related to a trend of worse prognosis for CRPC because of increased 
tumor expression of cell proliferation and cell cycle genes[23], but without significant difference.

It is not clear whether HSD3B1(1245C) induces an impaired survival outcome in the state of CRPC. It 
would also be valuable to explore if germline HSD3B1 is predictive for the reaction to the related medical 
management for CRPC. Hearn et al.[21] reported no relation between HSD3B1 and response to docetaxel. In 
addition, as mentioned above, the key mechanism of CRPC development is intertumoral androgen 
synthesis and reactivation of AR. Some medical therapies aiming at blocking this process, known as AR 
pathway inhibitors (ARPIs), are widely accepted to be applied in the treatment of CRPC, such as AR 
antagonists including enzalutamide and CYP17A1 inhibitors including 17α-hydroxylase/17,20-lyase. In 
addition, CYP17A1 inhibitors include nonsteroidal and steroidal types. Steroidal CYP17A1 inhibitors, such 
as abiraterone, are converted by 3βHSD1, the downstream metabolites of which act as AR agonists, inducing 
an opposite effect[25,26].

Biologically, HSD3B1(1245C) is supposed to invalidate both abiraterone and enzalutamide. 
Alyamani et al.[27] [Table 2] conducted a study on the pharmacokinetics and metabolites of the steroidal 
CYP17A1 inhibitor abiraterone. They concluded that HSD3B1 might negate the efficiency of abiraterone 
based on the results that the downstream metabolite of abiraterone, 3-keto-5α-abiraterone, which is an AR 
agonist, significantly increased with more copies of HSD3B1(1245C), while the level of another metabolite, 
D4A, which is an AR antagonist, did not increase. Theoretically, in addition to abiraterone, enzalutamide 
may also be negated by HSD3B1(1245C). The permissive adrenal effect of HSD3B1(1245C) causes an 
increase of testosterone. It has been reported that increased the AR natural ligand might decrease the 
activity of enzalutamide[28].

Several clinical studies were performed to identify the role of HSD3B1. Almassi et al.[29] focused on the 
relation between HSD3B1 and the curative effect of the nonsteroidal CYP17A1 inhibitor ketoconazole 
among patients with metastatic CRPC. They concluded that HSD3B1(1245C) marginally significantly 
prolonged time of progression. Compared with the AA genotype group, the HR of the AC genotype group 
for disease progression was 0.6 (P = 0.06) and the HR of the CC genotype group was 0.5 (P = 0.08). 
Hahn et al.[30] focused on the predictive effect of HSD3B1(1245C) for patients with CRPC treated with 
abiraterone as first-line therapy, showing that there were no significant associations.
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Table 2. Summary of studies about the association between HSD3B1 variants and PCa treated with other medical management

Study Medical 
management

No. of 
Cases

No. of 
Carriers Results Conclusions

Almassi et al.[29], 2018 Ketoconazole 90 46 For duration of treatment: 
CC: HR = 2.2; 95%CI: 1.1-4.4; P = 
0.02 
AC: HR = 1.8; 95%CI: 1.1-2.9; P = 
0.01 
For disease progression: 
CC: HR = 0.5; 95%CI: 0.3-1.1; P = 
0.08 
AC: HR = 0.6; 95%CI: 0.4-1.0; P 
= 0.06

The HSD3B1(1245C) variant allele is 
associated with prolonged time to disease 
progression among men with metastatic 
CRPC treated with nonsteroidal CYP17A1 
inhibition

Hahn, et al.[30], 2018 Abiraterone 76 34 For PFS: 
CC vs. AA: 6.4 m vs. 7.3 m; P = 
0.28 
CA vs. AA: 6.2 m vs. 7.3 m; P = 
0.64

Variant HSD3B1 caused no difference with 
the response to abiraterone

Shiota et al.[19], 2019 Abiraterone 99 14 For treatment failure: 
AC: HR = 0.35; 95%CI: 0.13-
0.80; P = 0.01 
For OS: 
AC: HR = 0.40; 95%CI: 0.13-
0.94; P = 0.04

Variant HSD3B1 was associated with less 
treatment failure and better survival 
outcome for CRPC treated with abiraterone

Hearn et al.[21], 2020 ADT randomized 
plus docetaxel

475 270 Data not shown Variant HSD3B1 did not appear to be 
predictive of differential benefit with 
docetaxel

Khalaf et al.[31], 2020 Abiraterone or 
enzalutamide

546 297 For TTP: 
CC: HR = 1.31; 95%CI: 1.02-1.67; 
P = 0.032 
For PSA response: 
CC vs. AC vs. AA: 48% vs. 62% 
vs. 65%; P = 0.019 
For TTPP: 
CC: HR = 1.28; 95%CI: 0.99-1.66; 
P = 0.064

HSD3B1 (CC) was associated with shorter 
TTP and less response rate, but not with 
survival outcome

Lu et al.[32], 2020 Abiraterone or 
enzalutamide

266 123 For PSA30 response: 
CC vs. AC/AA: 67.7% vs. 68.4%; 
P > 0.99 
For duration of treatment: 
CC: HR = 1.25; 95%CI: 0.79-1.97; 
P = 0.34 
For OS: 
CC: HR = 1.78; 95%CI: 1.03-3.07; 
P = 0.04

HSD3B1 (CC) was associated with shorter 
overall survival, but not with response to 
treatment

HR: Hazard ratio; 95%CI: 95% confidence interval; CRPC: castrate-resistant prostate cancer; PFS: progression-free survival; OS: overall survival; 
TTP: time to progression; PSA: prostate specific antigen.

Both Khalaf  et al.[31] and Lu et al.[32] invest igated the associat ion between HSD3B1 and 
abiraterone/enzalutamide. In the work of Khalaf et al.[31], 547 patients from two cohorts were involved. For 
patients with metastatic CRPC treated with abiraterone/enzalutamide, the CC genotype had worse time to 
progression (HR = 1.31; P = 0.032) and a nonsignificant trend to shorter time to PSA progression (HR = 
1.28; P = 0.064). In addition, the CC genotype was less likely to achieve a PSA response according to the 
PSA response rates (48% for CC, 62% for AC, and 65% for AA, P = 0.019). However, no association was 
shown between HSD3B1(1245C) and overall survival. In contrast, Lu et al.[32] proposed that HSD3B1 (CC) 
was related to worse survival outcome (HR = 1.78; P = 0.04) and had no association with response to 
management in patients with mCRPC treated with abiraterone/enzalutamide according to the analysis of a 
cohort of 266 patients.
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Shiota et al.[19] reported a completely opposite conclusion based on a cohort of 99 Japanese patients with 
CRPC using abiraterone. Patients carrying variant genotypes (CC or AC) had significantly lower 
progression risk (HR = 0.32; P = 0.006) and lower all-cause mortality risk (HR = 0.40; P = 0.04) compared 
with others carrying the AA genotype. Furthermore, Shiota et al.[33] also studied the combinational use of 
HSD3B1 and 5α-reductase (encoding by SRD5A2), a key enzyme for conversion of testosterone into DHT. 
They showed that HSD3B1 (AA) with variant genotype of SRD5A2 led to the worst response to abiraterone 
in the state of CRPC.

In summary, germline variants of HSD3B1 influence the therapeutic effects of patients with CRPC, 
especially for abiraterone and enzalutamide. However, there exists a contradiction with regard to the exact 
function. Further studies are necessary to figure out the role of HSD3B1.

Potential role of the HSD3B1 in the clinical management of PCa
Based on the published studies, the role of germline HSD3B1(1245C) in PCa is summarized as follows: (1) 
in the state of CSPC, HSD3B1(1245C) accelerates resistance to ADT, especially for patients with low-
volume diseases; (2) for the survival outcome of patients with CSPC undergoing ADT, evidence of the 
impact of HSD3B1(1245C) is not sufficient; (3) in the state of CRPC, HSD3B1(1245C) affects the efficiency 
of clinical management but cannot be a reliable biomarker because of conflicting results; and (4) for the 
survival outcome of patients with CRPC, HSD3B1(1245C) probably has a negative effect.

Although how HSD3B1 functions is still not clear, the HSD3B1 genotype can still provide some advice for 
clinical management. For patients with advanced PCa receiving ADT, HSD3B1 variant genotypes can 
remind physicians to pay more attention to the progression of resistance to ADT. When choosing other 
medical therapies, germline variants of HSD3B1 can act as a reference according to current studies.

Additionally, further studies are worth performing to demonstrate the effect of HSD3B1 variants on clinical 
management of PCa. In theory, HSD3B1(1245C), as an adrenal-permissive allele, is considered to induce a 
switch to a reduced tumor dependence on gonadal androgens and augmented dependence on extragonadal 
androgens. According to the study by Khalaf et al.[31], the treatment effect and survival outcome were more 
favorable in the cohort where ARPIs were used as first-line therapy than other cohorts where previous first-
line therapies were allowed. These two facts suggest that using ARPIs in the state of CSPC might benefit 
patients carrying HSD3B1 variants. In recent years, abiraterone with ADT was also shown to improve the 
prognosis of CSPC[34,35]. As a result, a predictive role of HSD3B1 variants for abiraterone used in the state of 
CSPC is a potential topic of further research.

Besides, some points provide potential directions for future study in order to identify the association 
between HSD3B1 and the clinical management of PCa. First, HSD3B1 variants present a significant inter-
ethnic disparity. For example, the frequency of HSD3B1(1245C) is 34% for European, 20% for American, 
16% for South Asian, 9% for African, and 8% for East Asian patients[36]. Inter-ethnic disparity may be one of 
the explanations to the opposite outcomes about the effect of HSD3B1(1245C) on abiraterone. Second, loss 
of heterozygosity (LOH) is presented in the HSD3B1 gene. Hearn et al.[17] observed that 3 of 11 (27%) 
patients with HSD3B1 (AC) had developed CRPC with LOH of the wild-type allele, whereas none had lost 
the variant allele. This observation might explain the better treatment outcome when ARPIs were used as 
first-line therapy. Third, Hearn et al.[21] concluded that the influence of HSD3B1 depends on the tumor 
burden (the extent of metastatic disease), which might be worth in-depth study. At last, it remains to be 
studied whether HSD3B1 can be treated as a therapeutic target for PCa, about which no work has been 
reported up to now. However, the therapeutic potential of targeting HSD3B1 was reported in triple-negative 
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breast cancer based on an in vitro study[37].

CONCLUSION
HSD3B1(1245C) has been found to be associated with ADT resistance and poorer prognosis. Its association 
with next-generation hormone therapy is still unclear (i.e., abiraterone). Very few commercial genetic 
profiling products have included this variant in routine testing. However, its clinical impact as well as its 
high cost-effectiveness (single variant testing is usually inexpensive) should not be underestimated. Based 
on the review of the current evidence, clinicians should consider a more aggressive treatment or follow-up 
strategy for patients with HSD3B1(1245C) variants who are undergoing ADT.
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