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Abstract
The active contour model (ACM) approach in image segmentation is regarded as a research hotspot in the area of
computer vision, which is widely applied in different kinds of applications in practice, such as medical image pro-
cessing. The essence of ACM is to make use ofuse an enclosed and smooth curve to signify the target boundary,
which is usually accomplished by minimizing the associated energy function by means ofthrough the standard de-
scent method. This paper presents an overview of ACMs for handling image segmentation problems in various fields.
It begins with an introduction briefly reviewing different ACMswith their pros and cons. Then, some basic knowledge
in of the theory of ACMs is explained, and several popular ACMs in terms of three categories, including region-based
ACMs, edge-based ACMs, and hybrid ACMs, are detailedly reviewed with their advantages and disadvantages. Af-
ter that, twelve ACMs are chosen from the literature to conduct three sets of segmentation experiments to segment
different kinds of images, and compare the segmentation efficiency and accuracy with different methods. Next, two
deep learning-based algorithms are implemented to segment different types of images to compare segmentation re-
sults with several ACMs. Experimental results confirm some useful conclusions about their sharing strengths and
weaknesses. Lastly, this paper points out some promising research directions that need to be further studied in the
future.
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1. INTRODUCTION
Image segmentation is a significant component in image processing, and serves as the foundation for image
analysis and image understanding. The accuracy of image segmentation hugely affects the quality of subse-
quent image processing procedures. Its major role is to separate the input images into a series of disjoint
sub-regions with unique features, and extract objects of interest. Therefore, image segmentation has been ex-
tensively employed in a variety of areas such as medical image processing [1–4], target recognition [5–8], moving
target tracking [9–12], etc.

In the last decade, active contour model (ACM) using the level set approach has become one of the most effi-
cient tools for image segmentation, which has been extensively employed in tasks of image segmentation. The
image segmentation algorithm based on ACM is an image processing technique that combines upper-level and
various prior knowledge for stable image segmentation, which can add image grayscale and edge information
during the process of optimization. It provides a piece-wise smooth closed contour as the final outcome, which
haswith superior performance such as diverse forms and flexible structures. ACM converts the image segmen-
tation problem into the process of solving a minimization problem with the energy function. The contour of
the target object is expressed by means of the zero level set in the execution process, which is convenient to
dealfor dealing with the topological deformation during the curve evolution. Nevertheless, the topology of the
segmented region changes in an automatic and uncontrollable manner can either be an advantage or an incon-
venience according to different applications. The essence of ACM is to employ a continuous and closed curve
to represent object boundary, which is achieved through the standard gradient descent approach to minimize
the associated energy function.

ACMs are generally comprised of two categories: parametric ACMs and geometric ACMs. In parametric
ACMs [13,14], the evolution curve is described in the parametric form to obtain object boundary. However, para-
metric ACMs can only deal with images that include a sole target object with an obvious boundary through the
process of parameterization. Most importantly, they cannot automatically handle topology changes during the
process of curve evolution. The geometric ACM is also named as the level set method, which guides evolution
curves to evolve towards the target boundary through the geometric measurement parameters. The introduc-
tion of level set methods makes it possible to segment images with multiple target objects simultaneously, and
solves the issue of topology changes (merging or broken curves) caused by the process of parameterization in
parametric ACMs. This paper mainly pays attention to the existing geometric ACMs, and they can be further
categorized into three types: region-based ACMs [15–17], which aim at identifying each region of interest using
a defined region descriptor to guide the evolution motion of active contour; edge-based ACMs [18,19], which
utilize gradient information of the target boundary as the major driving force to attract the active contour to
the object boundary; and hybrid ACMs [20–24], which combine local region and edge information together to
instruct evolution curve to move towards target boundary.

The Chan-Vese (CV) model [15] utilized the average gray values of the outside and inside areas of the contour
to characterize the foreground and background of the input image, respectively. As a classical region-based
ACM, CV model does not need to utilize image gradient information, which makes it very suitable to seg-
mentfor segmenting images with blurred or discontinuous edges. However, for images with uneven grayscale
such as images subjected to uneven illumination, CV model could obtain undesired segmentation results in
the form of having difficulty extracting meaningful objects out of images and falling into local minima [25].
To solve this issue, the pieceiwse piecewise smooth (PS) model [26] was developed to segment images with in-
tensity non-uniformity to some degree due to the consideration of image local attributes. Nevertheless, PS
model is sensitive to different initial contours and inefficient due to the complex computation process. The ge-
ometric active contours (GAC) model [27,28] translated curve evolution into the evolution of level set function
through variational methods, which effectively solves topology change problems. However, this model has to
continuously re-initialize the level set function to zero level set, which results in inefficient segmentation and
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possible boundary leakage. In addition, the segmentation results of medical images that usually contain noise
and blurred or discontinuous edges are poor. The fast global minimization (FGM) model [29] defined global
minimizers to overcome the drawback of falling into local minima in the local optimization approach such as
CV model [15], which enables the FGM model to be independent of random positions of initial contours and
gets rid of frequent re-initialization of distance function in GAC model [28]. The model [30] was competent to
obtain the global minimum of an ACM between two sides, which enables the initialization process easier and
reduces the chance of falling into a local minimum at the false edge. The key of this model is to take advantage
of a novel numerical method to compute the minimum route, which is the global minimum of the associated
energy function among all routes connecting the two end points.

Tomake the level set function inherently stable, the distance regularized level set evolution (DRLSE) model [31]

added a distance regularization term, which controls the deviation between the level set function and the stan-
dard signed distance function during the curve evolution. In addition, this model avoided the problem of
constant re-initialization during the curve evolution. Nevertheless, this model has no self-adjustment ability
during the process of energy minimization due to uni-directional area term, and remains sensitive to different
selections of initial contours. The bias correction (BC) model [32] was designed to segment the image and com-
pute the bias field simultaneously to correct unevenly distributed intensity in medical images, which is more
precise and has less segmentation time than the famous PS model. However, this model is nowadays ineffi-
cient and less accurate than many newly developed ACMs. In addition, it is not very effective in segmenting
natural images taken from nature. The local binary fitting (LBF) [33] and region- scalable fitting (RSF) [34] mod-
els were constructed to segment images with intensity non-uniformity, which use a kernel function to design
a local binary fitting energy and embeds information of local area to guide the motion of level set function. In
addition, these two models incorporates a penalty term in the energy function, which avoids the periodic re-
initialization process and greatly improves algorithm efficiency. However, the introduced kernel function only
calculates the grayscale value of image locally, which makes it possible to get trapped into local minimum dur-
ing the procedure of minimizing its energy. In other words, these two models are sensitive to initial contours.
In addition, it takes time to calculate the two fitting functions that need to be continuously updated during each
iteration, resulting in the inefficient segmentation of RSF model. The local image fit (LIF) model [35] consid-
ered the technique of Gaussian filtering and local image information to segment different images with intensity
non-uniformity, which segments images faster than RSFmodel due to only two convolution operations during
each iteration. However, this model still remains susceptible to different initial contours. Specifically, an inap-
propriate initial contour may result in a wrong segmentation due to the fact that the majority of existing ACMs
have non-convex energy functions. To solve the issue of non-convex functions, the approach [36] was designed
to translate non-convex function to convex function, which handles the problem of local minima frequently
occurred occurring in non-convex function. Nevertheless, this approach is too complex and time-consuming
to be applied in practice. In addition, the method [37] numerically tracked an accurate numerical approxima-
tion of the most optimized solution for some relaxed problems, which is capable of providing a close bound
between the calculated solution and the real minimizer. Nevertheless, this model is not guaranteed to obtain
a global minimizer of the minimal partition problem (also known as spatially continuous Potts model).

The local and global intensity fitting (LGIF) model [38] was defined as a linear combination of local image fit
(LIF) energy and global image fit (GIF) energy. By choosing the appropriate weights that are used to control
the ratio of LIF energy and GIF energy, this model can effectively handle the grayscale non-uniformity and
has good initialization robustness. However, the weights of LIF and GIFmodels are unpredictable for different
images and often need to be manually calibrated with respect to the degree of grayscale non-uniformity. The
segmentationwill fail if it is chosen poorly [39]. The local gaussian distribution fitting (LGDF)model [40] defined
a fitting energy based on themean and variance of the local gray values. Compared with RSFmodel, this model
is able to segment local areas with the same mean gray value but different variances. However, this model is
less efficient than RSFmodel due to the fact that more time is consumed to compute the variances. In addition,
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this model is also sensitive to different initial contours [41].

The core of local regionChan-Vese (LRCV)model [42] was to replace two fitting constants in theCVmodel with
the two fitting functions in RSFmodel. In addition, this model utilizes the segmentation result of degraded CV
model as the initial contour, which can reduce the dependence on the initial contour to a certain extent and
accelerate the segmentation speed at the same time. Considering that many targets and backgrounds in real
images are random, the local histogram fitting (LHF) model [43] took the advantage of two fitted histograms
to approximate the distribution of the target and background, which can be used to segment regions with un-
predictable distributions. However, it is inefficient because it needs to calculate the histogram distribution for
each gray level (0-255). Similarly, it is sensitive to the initial contours. The local and global Gaussian distribu-
tion fitting (LGGDF) model [44] constructed a linear combination of a local and global Gaussian fit energies
with a changeable weight to balance the local and global energies, which further decreases the dependence on
the choices of initial contours. However, it is computationally intensive and the adaptive weight does not work
well for some images. The local likelihood image fitting (LLIF) model [45] mainly utilized mean intensity and
variance information of the local region. In fact, LLIF model is a combination of LIF model and LGDF model,
which has enhanced applicability for segmenting images. However, the segmentation efficiency is relatively
low, while the robustness to initialization is not appealing [46].

The RSF&LoG model [39] combined RSF model with optimized Laplacian of Gaussian (LoG) energy to im-
prove segmentation results, which further improve sensitivity to different initial contours. Nevertheless, the
segmentation time of this model is relatively long [47] due to the unoptimized computation procedure. The
local pre-fitting (LPF) model [48] pre-calculated mean intensities of local regions ahead of iteration to obtain
faster segmentation speed. Nevertheless, this model still faces some common issues such as stagnation of false
boundaries, under- segmentation [49]. Therefore, the segmentation accuracy of this model still has space to be
further improved. The LPF&FCM model [41] locally fitted out two fuzzy center points inside and outside the
evolution curve ahead of iteration through the fuzzy c-means (FCM) clustering algorithm, which reduces com-
putation cost and improves segmentation efficiency. In addition, this model puts combines an adaptive edge
indicator function and an adaptive sign function together to resolve the issue of single direction of evolution
contour to realize bidirectional motion.

The super-pixel based via a local similarity factor and saliency (SLSFS) model [50] linked super-pixel with FCM
clustering algorithm to create initial contours, which is competent to create adaptive initial contour in the
neighborhood of the target and effectively protect weak edge information. Themodel [51] constructed an adap-
tive weight ratio to calibrate the relationship between local energy part and global energy part, which is capable
of automatically calibrating the direction of curve evolution with respect to the location of the target region.
Nevertheless, the initial contour still has to be manually labeled during the process of curve evolution. The
approach [52] associated the level set method (LSE) model [32] with region and edge synergetic level set frame-
work (RESLS) model [53] to improve segmentation results, which is able to efficiently segment images with
unevenly distributed intensity and extends the two-phase model to multi-phase model. However, this model
is sensitive to the choice of parameters and incompetent to in effectively processing natural images with com-
plicated background information. The method [54] employed self- organizing maps (SOM) to cluster the input
image into two regions: foreground and background regions, which decreases the interference of noise and
enhances system robustness. However, compared with K-mean clustering algorithm, SOM algorithm may ob-
tains relatively smaller lower computation precision owing to the update of neighborhood nodes. The global
and local fuzzy image fitting (GLFIF) model [55] utilized a combination of global and local fitting energy to
process images with noise and non-uniform intensity, which hugely decreases the influences of background
noise and intensity non-uniformity to obtain accurate segmentation result.

The additive bias correction (ABC) model [56] employed the theory of bias field correction to effectively seg-

http://dx.doi.org/10.20517/ir.2023.02


Chen et al. Intell Robot 2023;3(1):23-55 I http://dx.doi.org/10.20517/ir.2023.02 Page 27

ment images with unevenly distributed intensity and achieved good segmentation results. However, the issue
of under- segmentation may occur while segmenting images with Gaussian noise interference, as described
in Section 4, which means that the anti-noise robustness of this model still has space to be optimized. The
pre-fitting energy (PFE) model [47] calculated median intensities of local regions before iteration begins began
to decrease segmentation time. In addition, this model contains a novel single well potential function and its
corresponding evolution speed function to facilitate the evolution speed of the level set function to achieve
fast image segmentation. However, issues of stagnation of false boundaries and under- segmentation may
take placeoccur during the process of evolution process. The above said issues are illustrated and explained in
detail in Section 4. Therefore, this model still has room for improvement in terms of system robustness and
segmentation accuracy. The pre-fitting bias correction (PBC) model [57] utilized an optimized FCM algorithm
to pre-calculate the bias field before iteration, which is able to effectively segmenting images with unevenly dis-
tributed intensity and greatly reduces segmentation time. However, the segmentation accuracy and efficiency
may be inversely affected if the FCM algorithm has bad performanceperforms poorly. The local and global Jef-
freys divergence (LGJD) model [58] put local and global data fitting energies together to measure the difference
between input image and fitted image through the Jeffreys divergence theory, which can effectively segment
natural and medical images with intensity non-uniformities. However, this model has a long segmentation
time [47] due to the unoptimized computation process. The adaptive local pre-fitting energy function, based
on Jeffreys divergence (APFJD) model [49], embedded two pre-fitting functions to construct an enhanced en-
ergy function. This model replaces the traditional Euclidean distance with the theory of Jeffreys divergence to
measure the distance between real image and fitted image, which is proved to be more capable of segmenting
images with intensity non-uniformity efficiently and effectively. Nevertheless, the matter of under- segmenta-
tion sometimes happens when segmenting images with Gaussian noise, as described and explained in detail in
Section 4, which indicates that this model still has room for improvement regarding robustness against noise
interference.

In the beginning of this paper, the authors have briefly reviewed the diverse ACMs (region-based ACMs, edge-
based ACMs, and hybrid ACMs) in the area of image segmentation with their pros and cons. Then, several
typical models in region-based ACMs, edge-based ACMs, and hybrid ACMs have beenwere reviewed with
their advantages and disadvantages, respectively. After that, 12 typical ACMs chosen from the literature re-
view have beenwere selected to conduct three comparison experiments on different kinds of images (synthetic
images, medical images, and natural images). Next, two deep-learning based algorithms have been imple-
mented to segment double-phase images and multi-phase images, whose experimental results are compared
with several ACMs to demonstrate their strengths and weaknesses. Lastly, some promising research directions
and works have been recommended to subsequent researchers. The rest of this paper is arranged as follows:
Section 2 explains some basic knowledge of the ACMs theory. Section 3 reviews several popular ACMs in three
categories, including region-based ACMs, edge-based ACMs, and hybrid ACMs, with their advantages and
disadvantages. Section 4 describes experimental results with respect to segmentation experiments of synthetic
images, medical images, and natural images. Section 5 presents several possible research directions.

2. RELATED KNOWLEDGE
2.1. Curve evolution
Geometric ACMs [59–62] aremainly on the basis of partial differential equations (PDEs) and variationalmethod,
whose essence is to continuously evolve toward the direction of energyminimumunder the constraint of image
information and give conditions. The segmentation process is generally as follows: a closed curve is initialized
on the given image. Then, the curve evolves under the combined effect of internal and external energies, and
stops evolving when the energy function achieves a minimal value through gradient descent method. Lastly,
the zero level set coincides with the target edge to complete segmentation.
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The goal of the level set approach is to find out the zero level set, which represents the target boundary as
energy function is minimized through standard descent method. In other words, this level set method utilizes
zero level set one dimension higher to express the evolution result of low-dimensional target. During the curve
evolution, the points on the curve move towards their normal directions at a certain velocity respectively, with
time as a variable respectively according to a certain velocity. In addition, the speed and direction of themotion
are mainly controlled by two parameters: curvature and unit normal vector.

A closed and smooth curve 𝐶 is defined in two dimensions [63] as follows:

𝑑𝐶

𝑑𝑝
= 𝑇,

𝑑2𝐶

𝑑𝑝
= 𝑘𝑁, (1)

where 𝑝 is the curve parameter, 𝑘 denotes the curvature, 𝑇 signifies the tangent line, and 𝑁 represents the
normal line. Note that 𝑇 (𝑝) and 𝑁 (𝑝) are perpendicular to each other, so the direction and magnitude of the
motion of any point on the curve C can be represented by these two vectors. By adding the time variable 𝑡, the
evolution of the curve is represented as

𝑑𝐶 (𝑡)
𝑑𝑡

= 𝛼1𝑇 + 𝛼2𝑁, (2)

where 𝛼1 denotes the point speed on the curve in the tangential direction, and 𝛼2 signifies the point speed
on the curve in the normal direction. Since the shape change and geometric properties of the curve during
evolution process are only related to the speed in the normal direction. Therefore, only the normal speed is
taken into consideration, while the velocity component in the tangential direction is chosen to be ignored for
better segmentation efficiency in practical applications.

Therefore, Equation (2) can be simplified as

𝑑𝐶 (𝑡)
𝑑𝑡

= 𝐹𝑛𝑁, (3)

where 𝐹𝑛 is the speed function used to represent the motion speed of all points on the curve.

2.2. Level set function
The fundamental idea of level set method is to express the evolution of a closed curve 𝐶 in the plane as the
evolution of the intersection of a higher dimensional functionwith the horizontal plane by using the expression
of an implicit function, which performs interface tracing and shape modeling by solving the zero level set
function [64]. Specifically, the level set method employs a level set function a dimension higher to implicitly
express a two-dimensional closed curve, or a three-dimensional surface, or a multi-dimensional hyper-surface,
which transforms the process of curve evolution into the evolution problem of level set function one dimension
higher.

The level set function is always a valid function when the topology of the closed curve or surface embedded
in the level set function changes. Instead of tracking the position of the evolved curve, the level set function is
continuously updated under the action of solving a partial differential evolution equation to figure out its zero
level set when image segmentation is performed by the level set method. The zero level set at that moment is
derived when the evolution process stops under some certain criteria, which means the position of the zero
level set is the location of the object contour after segmentation.

2.3. Energy function
The internal energy is determined by the internal properties of the curve, which defines an enlargeable and
bendable curve deformation energy term, and maintains the continuity and smoothness of the contour curve
by adjusting the weights to control the consistency of the elastic tensor of curve bending and the rigid tensor
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of stretching. The external energy determined by image information consists of image constraint energy term
and image potential energy term [65]. There is no fixed expression formula for the constraint energy term,
which is usually constructed according to users’ demands or image features. The external energy determines
the evolution direction of the active contour, which guides the evolution contour line to evolve towards the
target boundary.

3. ACTIVE CONTOUR MODEL
In this section, some representative ACMs in of three types (region-based ACMs, edge-based ACMs, and
hybrid ACMs) are reviewed with their pros and cons in detail.

3.1. Region-based ACMs
3.1.1. Mumford Shah model
MSmodel [26] unifies image data, initial estimation and target contour in a feature extraction process under the
constraint of knowledge, which is capable of autonomously converging to the energy minimum energy state
after proper initialization. This model converts image segmentation issue into minimization of the energy
function as follows:

𝑒𝑀𝑆 (𝑣, 𝐾) = 𝑝
∫
Ω
(𝑣 − 𝐼)2𝑑𝑥 + 𝑞

∫
Ω\𝐾

|∇𝑣 |2𝑑𝑥 + 𝑟 |𝐾 |, (4)

where 𝑣 is the fitted image, 𝐼 is the original input image, ∇ denotes gradient operator, |𝐾 | is the length of
contour line 𝐾 , and 𝑝, 𝑞, 𝑟 are positive coefficients to control the associated segments.

The energy function in Equation (4) is comprised of three terms: the first data fidelity term (𝑝
∫
Ω
(𝑣 − 𝐼)2𝑑𝑥)

maintains the similarity between original input image and segmentation result; the second curve smoothing
term (𝑞

∫
Ω\𝐾 |∇𝑣 |2𝑑𝑥) makes segmentation result smooth, and the third length constraint term (𝑟 |𝐾 |) con-

strains the curve length. Among these terms, data fidelity term and curve smoothing term utilize the feature
of local region information to get rid of unnecessary contours. The most optimized contour 𝐾 is obtained
through the minimization of Mumford and Shah energy function in Equation (4), which segments the orig-
inal input image 𝐼 into several non-overlapping areas, and a fitted image 𝑣 after the process of smoothing.
However, it may have the issue of several local minima since that 𝑒𝑀𝑆 (𝑣, 𝐾) is not convex. In addition, it is
time-consuming and inefficient to solve Equation (4) because of incompatible dimensions of 𝑣 and 𝐾 [66].

3.1.2. Chan Vese model
CV model [15] considers the image global characteristics and image statistical information inside and outside
the evolution curve to drive the curve to approach the contour of the target area, which achieves success in the
segmentation of images with blurred edges and small gradient changes and remains insensitive to noise. The
CV energy function is proposed as

𝑒𝐶𝑉 (𝑐1, 𝑐2, 𝐶) =
∫
outside( 𝐶)

(𝐼 − 𝑐1)2 𝑑𝑥 +
∫
inside (𝐶)

(𝐼 − 𝑐2)2 𝑑𝑥 + 𝑎 |𝐶 |, (5)

where 𝑎 is a constant; 𝑐1 and 𝑐2 denotes the grayscale averages of the outer and inner regions of the curve,
respectively; |𝐶 | represents the length of evolution curve; the first two terms in Equation (5) are data-driven
terms that are utilized to guide the curve to evolve towards target boundary, and the last term in Equation (5)
is length constraint term that is used to control the curve length as well as smooth it. According to Equation
(5), the energy function 𝑒𝐶𝑉 reaches the minimum value when curve 𝐶 is on the edge of target boundary. In
the process of minimizing the CV energy, the curve 𝐶 can be represented by the level set function 𝜙, which
generates the following rewritten energy function as follows:

𝐸𝐶𝑉 (𝜙, 𝑐1, 𝑐2) =
∫
Ω
|𝐼 − 𝑐1 |2 𝐻𝜀 (𝜙(𝑥))𝑑𝑥 +

∫
Ω
|𝐼 − 𝑐2 |2 [1 − 𝐻𝜀 (𝜙(𝑥))] 𝑑𝑥 + 𝑢

∫
Ω
𝛿𝜀 (𝜙(𝑥)) |∇𝜙(𝑥) |𝑑𝑥, (6)

http://dx.doi.org/10.20517/ir.2023.02


Page 30 Chen et al. Intell Robot 2023;3(1):23-55 I http://dx.doi.org/10.20517/ir.2023.02

where 𝐻𝜀 (𝜙(𝑥)) and 𝛿𝜀 (𝜙(𝑥)) are approximated Heaviside and Dirac functions defined as

𝐻𝜀 (𝑥) =
1
2

(
1 +

2
𝜋

arctan
( 𝑥
𝜀

))
, (7)

𝛿𝜀 (𝑥) = 𝐻′
𝜀 (𝑥) =

𝜀

𝜋
(
𝜀2 + 𝑥2) . (8)

Utilizing the standard gradient descent approach to minimize the energy function in Equation (6), therefore,
the issue of minimizing the energy function is transformed into solving the gradient descent function, which
obtains the following gradient flow function (level set evolution function) as follows:

𝜕𝜙

𝜕𝑡
= −𝛿𝜀 (𝜙)

[
(𝐼 (𝑥) − 𝑐1)2 − (𝐼 (𝑥) − 𝑐1)2] + 𝑎𝛿𝜀 (𝜙) div

(
∇𝜙
|∇𝜙 |

)
, (9)

with 𝑐1 and 𝑐2 being 
𝑐1 =

∫
Ω 𝐼 (𝑥)·𝐻𝜀 (𝜙(𝑥))𝑑𝑥∫

Ω 𝐻𝜀 (𝜙(𝑥))𝑑𝑥
,

𝑐2 =
∫
Ω 𝐼 (𝑥)·[1−𝐻𝜀 (𝜙(𝑥)]𝑑𝑥∫

Ω [1−𝐻𝜀 (𝜙(𝑥))]𝑑𝑥
.

(10)

Lastly, the zero level set can be obtained through iteratively solving 𝜙𝑘+1 = 𝜙𝑘 +Δ𝑡 ·𝜕𝜙/𝜕𝑡. The iteration process
will stop either when the convergence criteria are satisfied or the maximum iteration number is reached.

CVmodel has fair segmentation speed and initialization robustness [42,67]. However, 𝑐1 and 𝑐2 are only related
to the global gray value of the input image. Therefore, the segmentation result will be wrong if the gray values
inside and outside the curve C are different. In other words, this model cannot segment images with intensity
non-uniformity, which limits its application scope.

3.1.3. Region scalable fitting model
RSF model employs Gaussian kernel function to extract image characteristics locally, which can effectively
process images with uneven grayscale. To overcome the drawback of CV model, RSF model [34] is proposed.
The RSF energy function based on local gray values is proposed as

𝜀Fit𝑥 (𝐶, 𝑓1(𝑥), 𝑓2(𝑥)) = 𝜆1

∫
outside (𝐶)

𝐾 (𝑥−𝑦) |𝐼 (𝑦) − 𝑓1(𝑥) |2 𝑑𝑦+𝜆2

∫
inside (𝐶)

𝐾 (𝑥−𝑦) |𝐼 (𝑦) − 𝑓2(𝑥) |2 𝑑𝑦, (11)

where 𝜆1 and 𝜆2 are constant values; 𝑓1(𝑥) and 𝑓2(𝑥) signify local fitting functions outside and inside curve
C; image intensity 𝐼 (𝑦) denotes local region centered at point 𝑥, whose size is controlled by Gaussian kernel
function 𝐾 . In fact, 𝜀Fit𝑥 denotes the weighted average squared error between the fitted values 𝑓1(𝑥) and 𝑓2(𝑥)
and the truth grayscale values. Therefore, given a centroid 𝑥, the fitted energy 𝜀Fit𝑥 is minimized when the
fitted values 𝑓1(𝑥) and 𝑓2(𝑥) are the best approximation of the local image grayscale values on both sides of the
contour C, which means that the contour C is on the target boundary. For all points 𝑥 in the image domain,
the total energy 𝑒𝑅𝑆𝐹 can be computed by integrating

∫
𝜀𝐹𝑖𝑡𝑥 (𝐶, 𝑓1(𝑥), 𝑓2(𝑥)) 𝑑𝑥, which is expressed as follows:

𝑒𝑅𝑆𝐹 (𝜙, 𝑓1(𝑥), 𝑓2(𝑥)) =𝜆1

∫
Ω

(∫
Ω
𝐾𝜎 (𝑥 − 𝑦) |𝐼 (𝑦) − 𝑓1(𝑥) |2 𝐻𝜀 (𝜙(𝑦))𝑑𝑦

)
𝑑𝑥

+ 𝜆2

∫
Ω

(∫
Ω
𝐾𝜎 (𝑥 − 𝑦) |𝐼 (𝑦) − 𝑓2(𝑥) |2 [1 − 𝐻𝜀 (𝜙(𝑦))] 𝑑𝑦

)
𝑑𝑥,

(12)

where 𝐻𝜀 (𝜙(𝑥)) and 𝛿𝜀 (𝜙(𝑥)) are approximated Heaviside and Dirac functions defined in Equation (7) and
Equation (8), respectively. In addition, length constraint term 𝐿 (𝜙) is added to smooth and shorten the contour
C while distance regularization term 𝑃(𝜙) is introduced to maintain the regularity of level set function 𝜙 to
avoid its re-initialization. Therefore, the total energy of RSF model is defined as

𝐹𝑅𝑆𝐹 (𝜙, 𝑓1(𝑥), 𝑓2(𝑥)) = 𝑒𝑅𝑆𝐹 (𝜙, 𝑓1(𝑥), 𝑓2(𝑥)) + 𝑎1𝐿 (𝜙) + 𝑎2𝑃(𝜙), (13)
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where 𝑎1 and 𝑎2 are constant values related to the length constraint term 𝐿 (𝜙) and the distance regularization
term 𝑃(𝜙), respectively, which are defined as

𝐿 (𝜙) =
∫
Ω
𝛿𝜀 (𝜙(𝑦)) |∇𝜙(𝑦) |𝑑𝑥, (14)

𝑃(𝜙) =
∫
Ω 2

1 ( |∇𝜙(𝑦) | − 1)2𝑑𝑥. (15)

Applying the standard gradient descent method [68] to minimize energy 𝐹𝑅𝑆𝐹 . Firstly, fix level set function
𝜙 and minimize energy 𝐹𝑅𝑆𝐹 with respect to 𝑓1(𝑥) and 𝑓2(𝑥) through partial derivative respectively, which
generates following functions as 

𝑓1(𝑥) =
∫
Ω 𝐾𝜎 (𝑥−𝑦) [𝐻𝜀 (𝜙(𝑦))·𝐼 (𝑦)]𝑑𝑦∫

Ω 𝐾𝜎 (𝑥−𝑦)𝐻𝜀 (𝜙(𝑦))𝑑𝑦
,

𝑓2(𝑥) =
∫
Ω 𝐾𝜎 (𝑥−𝑦) [(1−𝐻𝜀 (𝜙(𝑦))·𝐼 (𝑦)]𝑑𝑦∫

Ω 𝐾𝜎 (𝑥−𝑦) [1−𝐻𝜀 (𝜙(𝑦))]𝑑𝑦
.

(16)

Secondly, fix 𝑓1(𝑥) and 𝑓2(𝑥) and minimize energy 𝐹𝑅𝑆𝐹 with respect to level set function 𝜙 through partial
derivative respectively, which generates following gradient flow function as follow:

𝜕𝜙𝑅𝑆𝐹

𝜕𝑡
= −𝛿𝜀 (𝜙) (𝜆1𝑒1 − 𝜆2𝑒2) + 𝑎1𝛿𝜀 (𝜙) div

(
∇𝜙
|∇𝜙 |

)
+ 𝑎2

(
∇2𝜙 − div

(
∇𝜙
|∇𝜙|

))
, (17)

with 𝑒1(𝑥) and 𝑒2(𝑥) being {
𝑒1(𝑥) =

∫
Ω
𝐾𝜎 (𝑦 − 𝑥) |𝐼 (𝑦) − 𝑓1(𝑥) |2 𝑑𝑦,

𝑒2(𝑥) =
∫
Ω
𝐾𝜎 (𝑦 − 𝑥) |𝐼 (𝑦) − 𝑓2(𝑥) |2 𝑑𝑦.

(18)

In Equation (17), 𝑎1, 𝑎2 are positive constants, and the gradient flow is composed of three terms: the first term
−𝛿𝜀 (𝜙) (𝜆1𝑒1 − 𝜆2𝑒2) represents the data-driven term that drives curve C towards target boundary to complete
segmentation; the second term 𝑎1𝛿𝜀 (𝜙) div

(
∇𝜙
|∇𝜙|

)
signifies arc length of the contour C, which is used to smooth

or shorten the length of the contour C; the third term 𝑎2

(
∇2𝜙 − div

(
∇𝜙
|∇𝜙|

))
denotes the regularization term

of level set function, which is utilized to maintain the regularity of level set function.

RSF model sufficiently takes advantage of local image information through Gaussian kernel function, which
enables it to effectively segment images with intensity non-uniformity. However, the incorporated kernel
function only calculates the grayscale values of local image regions, which renders the energy function 𝐹𝑅𝑆𝐹

to easily fall into the local minimum during the process of iteration. Accordingly, this model is very susceptible
to the selection of initial contour. In addition, at least 4 convolutions have been performed to update the 2
fitting functions 𝑓1(𝑥)𝑎𝑛𝑑𝑓2(𝑥) in Equation (16) during each iteration, which leads to inefficient segmentation.

3.1.4. Local image fitting model
To reduce the computation time in RSF model, LIF model [35] is put forward to modify and optimize the
calculation procedure of fitting functions in RSF model, which greatly reduces the number of convolution
operations required to update the fitting functions.

The LIF energy function is constructed to minimize the difference between the fitted image and the actual one,
which is expressed as

𝑒LIF(𝜙) = 1
2

∫
Ω

��𝐼 (𝑦) − 𝐼 𝑓 (𝑥, 𝑦)��2 𝑑𝑥, (19)

where 𝐼 𝑓 (𝑥) is the local fitted image defined as

𝐼 𝑓 (𝑥, 𝑦) = 𝑚1(𝑥)𝐻 (𝜙(𝑦)) + 𝑚2(𝑥)(1 − 𝐻 (𝜙(𝑦))). (20)

http://dx.doi.org/10.20517/ir.2023.02


Page 32 Chen et al. Intell Robot 2023;3(1):23-55 I http://dx.doi.org/10.20517/ir.2023.02

Note that 𝐻𝜀 (𝜙(𝑦)) and 𝛿𝜀 (𝜙(𝑦)) are approximated Heaviside and Dirac functions defined in Equation (7)
and Equation (8), respectively; local fitting functions 𝑚1(𝑥) and 𝑚2(𝑥) are{

𝑚1(𝑥) = mean (𝐼 ∈ ({𝑦 ∈ Ω | 𝜙(𝑦) < 0} ∩Ω𝑘 (𝑥))) ,
𝑚2(𝑥) = mean (𝐼 ∈ ({𝑦 ∈ Ω | 𝜙(𝑦) > 0} ∩Ω𝑘 (𝑥))) ,

(21)

where 𝑥 signifies the center point of initial contour while 𝑦 denotes all point in a specific chosen region; Ω𝑘 (𝑥)
is a truncated Gaussian window 𝐾𝜎 with size (4𝑘 + 1) × (4𝑘 + 1) and standard deviation 𝜎. In fact, 𝑚1(𝑥)
and 𝑚2(𝑥) serves as two local fitting functions outside and inside the contour C. Note that 𝐾𝜎 is a Gaussian
kernel function with size 𝑘 × 𝑘 and standard deviation 𝜎. The parameter 𝜎 is used to control local region
size with respect to image features. Because of the localization property of the Gaussian kernel function, the
contribution of image intensity 𝐼 (𝑦) fades away if the distance between the center point 𝑥 and the point 𝑦
is far. In other words, the image intensity of point y in the vicinity of the center point 𝑥 mainly contributes
to the existence of LIF energy. Therefore, this model is capable of precisely handling images with unevenly
distributed intensity.

Utilizing the steepest descent method [68] to minimize the energy function 𝑒LIF(𝜙) in Equation (19), which
generates the gradient flow equation as follows:

𝜕𝜙𝐿𝐼𝐹

𝜕𝑡
=
(
𝐼 − 𝐼 𝑓 (𝑥)

)
(𝑚1(𝑥) − 𝑚2(𝑥)) 𝛿𝜀 (𝜙), (22)

where 𝑧1, 𝑧2 are positive constants; 𝛿𝜀 (𝜙(𝑥)) are approximated Dirac functions described in Equation (8).

Themain contribution of LIF model is to re-write data-driven term 𝜆1𝑒1−𝜆2𝑒2 in RSFmodel in Equation (17),
which reduces the convolution number of each iteration to update the fitting functions from 4 to 2 to save a
huge amount of computation time.

The LIF model re-writes data-driven term 𝜆1𝑒1 − 𝜆2𝑒2 in RSF model in Equation (17) as follows:

𝜆1𝑒1−𝜆2𝑒2 = (𝜆1 − 𝜆2) 𝐼2(𝑦) [𝐾𝜎 (𝑥) ∗ 1]−2𝐼 (𝑦) [𝐾𝜎 (𝑥) ∗ (𝜆1 𝑓1(𝑥) − 𝜆2 𝑓2(𝑥))]+𝐾𝜎 (𝑥)∗
(
𝜆1 𝑓

2
1 (𝑥) − 𝜆2 𝑓

2
2 (𝑥)

)
,

(23)
with 𝑒1(𝑥) and 𝑒2(𝑥)

𝑒1(𝑥) =
∫
Ω
𝐾𝜎 (𝑦 − 𝑥) |𝐼 (𝑦) − 𝑓1(𝑥) |2 d𝑦 = 𝐼2(𝑦) [𝐾𝜎 (𝑥) ∗ 1] − 2𝐼 (𝑦) [𝐾𝜎 (𝑥) ∗ 𝑓1(𝑥)] + 𝐾𝜎 (𝑥) ∗ 𝑓 2

1 (𝑥), (24)

𝑒2(𝑥) =
∫
Ω
𝐾𝜎 (𝑦 − 𝑥) |𝐼 (𝑦) − 𝑓2(𝑥) |2 d𝑦 = 𝐼2(𝑦) [𝐾𝜎 (𝑥) ∗ 1] − 2𝐼 (𝑦) [𝐾𝜎 (𝑥) ∗ 𝑓2(𝑥)] + 𝐾𝜎 (𝑥) ∗ 𝑓 2

2 (𝑥). (25)

In Equation (23), the first convolution term 𝐾𝜎 (𝑥) ∗ 1 only needs to be calculated once before iteration begins.
Note that 1 is a matrix full of ones, and 𝐾𝜎 (𝑥) ∗1 =

∫
𝐾𝜎 (𝑦−𝑥)𝑑𝑦, which equals to constant 1 anywhere but the

edge of the image region Ω. Therefore, there are only two convolution terms left 𝐾𝜎 (𝑥) ∗ (𝜆1 𝑓1(𝑥) − 𝜆2 𝑓2(𝑥))
and 𝐾𝜎 (𝑥) ∗

(
𝜆1 𝑓

2
1 (𝑥) − 𝜆2 𝑓

2
2 (𝑥)

)
to be calculated in each convolution.

Compared with RSFmodel, although LIFmodel does not contain length constraint and distance regularization
terms, it utilizes Gaussian filtering to smooth the curve 𝐶 as well as regularize the level set function, which
reduces the possibility of the occurrence of local minima. In addition, there are only 2 convolutions to update
fitting functions in Equation (23) in LIF model during each iteration instead of 4 convolution to update fitting
functions in Equation (16) in RSF model, which saves a great amount of computation time. However, the
incorporated Gaussian kernel function also only computes the grayscale values of local image area, which also
makes it easy to get stuck at a local minimum. That is to say, this the model maintains sensitivity to different
initial contours.
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3.2. Edge-based ACMs
3.2.1. Geodesic active contour model
GAC model [28] constructively integrates the concept of edge indicator function into energy function, which
can flexibly deal with topology changes and guide the contour line to converge at the target boundary.

GAC energy function [28] based on edge indicator function is defined as

𝑒(𝐶) =
∫ 1

0
(𝑒int (𝐶′(𝑞) + 𝑒ext (𝐶 (𝑞))) 𝑑𝑞, (26)

where 𝑒int is length constraint term and 𝑒ext is area term that are defined respectively as

𝑒int (𝐶′(𝑞)) = 𝛼1 |𝐶′(𝑞) |2 , (27)

𝑒ext (𝐶 (𝑞)) = 𝛾1𝑔𝛽 (𝐼) |∇𝐼 (𝐶 (𝑞)) |2 . (28)

Note that 𝛼1 and 𝛾1 are constant values; 𝑔𝛽 is the edge indicator defined as

𝑔𝛽 (𝐼) =
1

1 + |∇ (𝐾𝜎 ∗ 𝐼) |2
, (29)

where 𝐾𝜎 is the Gaussian kernel function with standard deviation 𝜎. Utilizing the standard gradient method
to minimize energy function in Equation (26), which generates gradient flow function as

𝜕𝜙

𝜕𝑡
= 𝛼1 |∇𝜙| div

(
𝑔𝛽

∇𝜙
|∇𝜙|

)
+ 𝛾1𝑔𝛽 (𝐼) |∇𝜙|. (30)

GACmodel obtains a closed curve (the zero level set) by continuously updating level set function under certain
rules, which can flexibly handles changes in curve topology. However, this model cannot realize adaptive
segmentation and requires human intervention. Specifically, the sign and magnitude of evolution speed need
to be determinedmanually with respect to the location of initial contour (inside or outside the target boundary),
which leads to the issue of repetitive re-initialization of level set function during iteration process and possible
boundary leaking. In addition, this model highly depends on the boundary gradient as well as initial position,
which means that only those boundary pixels with relatively strong great gradient changes are likely to be
detected.

3.2.2. Distance regularized level set evolution model
To solve the problem of repetitive re-initialization of level set function in GAC model, DRLSE model [31] in-
corporates a distance regularization term into the classic ACM to calibrate the deviation between the level set
function and the standard symbolic distance function (SDF) in the curve evolution process, so that the level
set function can maintain its internal stability, and finally avoids the problem of continuous re-initialization
in the curve evolution process.

DRLSE energy function is described as

𝐸𝐷𝑅𝐿𝑆𝐸 (𝜙) = 𝜇1

∫
Ω
𝑝2(|∇𝜙|)𝑑𝑥 + 𝜇2

∫
Ω
𝑔𝛽𝛿𝜀 (𝜙) |∇𝜙 |𝑑𝑥 + 𝜇3

∫
Ω
𝑔𝛽𝐻𝜀 (−𝜙)𝑑𝑥, (31)

where 𝜇1, 𝜇2, 𝜇3 are constant values; ∇ denotes gradient operator; 𝜙 is the level set function; 𝑔𝛽 is the edge
indicator function defined in Equation (29); 𝐻𝜀 (𝑥) and 𝛿𝜀 (𝑥) are regularized Heaviside and Dirac functions
denoted in Equation (7) and Equation (8), respectively; and the double well potential function 𝑝(𝑠) and its
associated derivative 𝑝′2(𝑠) are defined as follows respectively:

𝑝2(𝑠) =
{

1
(2𝜋)2 (1 − cos(2𝜋𝑠)), 𝑠 ≤ 1,
1
2 (𝑠 − 1)2, 𝑠 ≥ 1,

(32)
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𝑝′2(𝑠) =
{

1
2𝜋 sin(2𝜋𝑠), 𝑠 ≤ 1,
𝑠 − 1, 𝑠 ≥ 1.

(33)

Employing the steepest gradient descent method to minimize energy function in Equation (31), which obtains
the following gradient descent flow equation as

𝜕𝜙

𝜕𝑡
= 𝜇1 div

(
𝑑𝑝2 ( |∇𝜙|)∇𝜙

)
+ 𝜇2𝛿𝜀 (𝜙) div

(
𝑔
∇𝜙
|∇𝜙 |

)
+ 𝜇3𝑔𝛿𝜀 (𝜙), (34)

where div(𝑠) denotes vector divergence; the evolution speed function 𝑑𝑝2 (𝑠) is defined as

𝑑𝑝2 (𝑠) =
𝑝′2(𝑠)
𝑠

=

{
1

2𝜋𝑠 sin(2𝜋𝑠), 𝑠 ≤ 1,
1 − 1

𝑠 , 𝑠 ≥ 1.
(35)

DRLSEmodel incorporates the distance rule function to solve the deviation between the level set function and
the singed distance function, which means that the level set function no longer requires the re-initialization
operation in the iterative process. However, this model has several drawbacks, as follows:

• The area term utilized to facilitate the evolution speed of the zero level set is a single value (positive or
negative), which can be only chosen either from positive to zero or negative to zero during the process
of energy minimization. In a word, this model has no self-adjustment ability and cannot realize adaptive
segmentation.

• The area and length terms are highly dependent on the edge indicator function that is constructed by the
gradient of the input image. The edge indicator function will be almost zero if the gradient is big, which
renders the target boundary after Gaussian filtering blurry and wider. In this case, the target boundaries
may be interconnected due to Gaussian smoothing when the distance between targets is very close, which
results in segmentation failure.

• The constant 𝜇3 must be set manually, which has a great influence on the segmentation results. the The
evolution speed will be slowed down if 𝜇3 is chosen too small, and the evolution speed will be too large that
the target boundary leaks if 𝜇3 is set too big.

• The evolution speed function 𝑑𝑝2 (𝑠) has a maximum value of 1 when 𝑠 = 0, which renders the evolution
curve evolve so quickly that it may intrude into the target. In addition, the evolution speed function 𝑑𝑝2 (𝑠)
has a small slope when 𝑠 = 1, which leads to slow evolution speed.

3.2.3. Adaptive level set evolution model
To solve the issue of unidirectionalmotion of area term inDRLSEmodel, ALSEmodel [69] adds an adaptive sign
variable parameter to the area term of the energy function, so that the evolution curve can iterate according
to the current position and choose the direction independently. Its corresponding gradient flow function is
defined as

𝜕𝜙𝐴𝐿𝑆𝐸

𝜕𝑡
= 𝜇

(
Δ𝜙 − div

(
∇𝜙
|∇𝜙|

))
+ 𝜆𝑔𝑑𝑖𝑣

(
∇𝜙
|∇𝜙 |

)
𝛿(𝜙) + 𝑣 (𝐼, 𝑐3, 𝑐4) 𝑔𝛿(𝜙), (36)

where 𝜇 and 𝜆 are constants; div(𝑠) signifies the divergence of vector; the edge indicator function 𝑔 is denoted
as

𝑔(𝐼) = exp
(
− |∇𝐼𝜎 |

𝑘3

)
, (37)

where 𝑘3 is a positive constant used to control the slope of edge indicator function, and the area term
𝑣 (𝐼, 𝑐3, 𝑐4) 𝑔𝛿𝜀 (𝜙) is defined as

𝑣 (𝐼, 𝑐3, 𝑐4) = 𝛼 sign
(
𝐼 (𝑥, 𝑦) − 𝑐3 + 𝑐4

2

)
, (38)

with 
𝑐3 =

∫
Ω 𝐼 (𝑥,𝑦)𝐻𝜀 (−𝜙)d𝑥 d𝑦∫

Ω 𝐻𝜀 (−𝜙)d𝑥 d𝑦 ,

𝑐4 =
∫
Ω 𝐼 (𝑥,𝑦)𝐻𝜀 (𝜙)d𝑥 d𝑦∫

Ω 𝐻𝜀 (𝜙)d𝑥 d𝑦 .
(39)
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In Equation (36), the gradient flow function is composed of three parts: the first part 𝜇
(
Δ𝜙 − div

(
∇𝜙
|∇𝜙 |

))
based

on the distance rule term is used to reduce the error between the level set function and the signed distance
function, which gets rid of re-initialization during the process of iteration; the second part 𝜆𝑔𝑑𝑖𝑣

(
∇𝜙
|∇𝜙|

)
𝛿(𝜙)

is the length constraint term that is utilized to enhance the effect of shortening and smoothing the zero-level
contour, which effectively maintains the regularity of the evolution curve; the third part 𝑣 (𝐼, 𝑐3, 𝑐4) 𝑔𝛿(𝜙)
is the area term with variable coefficients, which is used to adjust the magnitude and direction of evolution
contour line.

Compared with DRLSE model, this model introduces the weighted coefficient 𝑣 (𝐼, 𝑐3, 𝑐4) in Equation (38) to
substitute constant value 𝜇3 in area term in Equation (34). The direction of this sign function 𝑣 (𝐼, 𝑐3, 𝑐4) is
determined by the mean difference between 𝐼 (𝑥, 𝑦) and the mean values of the images outside and inside the
contour line. Therefore, the gradient flow function can adjust the direction of evolutionmotion with respect to
the image grayscale information inside and outside the initial contour, which solves the issue of unidirectional
motion of the zero level set in DRLSE model and improves the robustness of the initial contour. However, the
issues such as the tendency to fall into false boundaryboundaries, leaking fromweak edges, and poor anti-noise
ability remain unsolved.

3.2.4. Fuzzy c-means model
To realize bidirectional motion of zero level set to accomplish adaptive segmentation, FCMmodel [41] links op-
timized FCM algorithm that calculates local image intensity with optimized adaptive functions, which resolves
the issues of leaking from vulnerable boundary and slow computation process.

FCM energy function is constructed as

𝐸𝐹𝐶𝑀 (𝜙) =𝑘1𝑅𝑝𝑤 (𝜙) + 𝑘2𝐿𝑔𝛽1
(𝜙) + 𝜑

(
𝐼𝜎1 , 𝐶1, 𝐶2

)
𝐴𝑔𝛽1

(𝜙)

=𝑘1

∫
Ω
𝑝𝑤 ( |∇𝜙|)𝑑𝑥 + 𝑘2

∫
Ω
𝑔𝛽1𝛿𝜀 (𝜙) |∇𝜙|𝑑𝑥 + 𝜑

(
𝐼𝜎1 , 𝐶1, 𝐶2

) ∫
Ω
𝑔𝛽1𝐻𝜀 (−𝜙)𝑑𝑥,

(40)

where 𝑘1 and 𝑘2 are positive constants; 𝜙 is the level set function; 𝐼𝜎1 is the image vector after Gaussian filtering;
𝐶1, 𝐶2 denotes the FCM energy; 𝐻𝜀 (𝑥) and 𝛿𝜀 (𝑥) are regularized Heaviside and Dirac functions denoted in
Eq. 7 and Eq. 8, respectively; the adaptive edge indicator function 𝑔𝛽1 (𝐼) is described as

𝑔𝛽1 (𝐼) =
1

1 +
��∇𝐼𝜎1

��2 /𝛽2
1

, (41)

with

𝛽1(𝐼) =
1 +

√
𝑆
(
𝐼𝜎1

)
3

, (42)

where 𝑆 denotes standard deviation value of image afterGaussian filtering, the adaptive sign function 𝜑
(
𝐼𝜎1 , 𝐶1, 𝐶2

)
in the area term is defined as

𝜑
(
𝐼𝜎1 , 𝐶1, 𝐶2

)
= 𝜂 arctan

[(
𝐼𝜎1 −

𝐶1 + 𝐶2

2

)
/𝜏

]
. (43)

In Equation (43), 𝜂 and 𝜏 are positive constant values; 𝐼𝜎1 = 𝐺𝜎 ∗ 𝐼 ; the two clustering results 𝐶1, 𝐶2 are
obtained through the cluster centroids 𝑐 𝑗 ,1 and membership function 𝜇 𝑗 (𝑥𝑖), which are described respectively
as follows:

𝑐 𝑗 ,1 =

∑𝑛×(2𝜔+1)2
𝑖=1

[
𝜇 𝑗 (𝑥𝑖)

]𝛼
𝑥𝑖∑𝑛×(2𝜔+1)2

𝑖=1
[
𝜇 𝑗 (𝑥𝑖)

]𝛼 , (44)
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𝜇 𝑗 (𝑥𝑖) =
∑𝑘
𝑠=1

��𝑥𝑖 − 𝑐 𝑗 ,1�� −2
𝛼−1∑𝑘

𝑠=1
��𝑥𝑖 − 𝑐𝑠,1�� −2

𝛼−1
, (45)

where image size of 𝐼 (𝑥) is 𝑚 × 𝑛; 𝑥𝑖 signifies ith pixel in the first row of image region; the weighted ratio 𝛼
equals to 2; 𝑛 × (2𝜔 + 1)2 is the total number of elements in particular sample; (2𝜔 + 1)2 signifies the width of
square frame. In FCM model, the cluster number 𝑘 equals to 2, and 𝐶1 = 𝑐1,1 and 𝐶2 = 𝑐2,1.

For the purpose of maintaining evolution stability, the potential function 𝑝𝑤 (𝑠) and its corresponding 𝑝𝑤′(𝑠)
are denoted respectively as follows:

𝑝𝑤 (𝑠) =
1
2
𝑠2 + 𝑤

2
exp

[
−
(
𝑠 − 0.75
𝑤

)2
]
+ 0.375

√
𝜋 erf

(
𝑠 − 0.75
𝑤

)
, (46)

𝑝𝑤
′(𝑠) = 4

3
𝑠

{
0.75 − exp

[
− (𝑠 − 0.75)2

𝑤2

]}
, (47)

where erf(·) denotes the Gaussian error function; 𝑤 is equal to 0.465; the evolution speed function 𝑑𝑝𝑤 (𝑠) is
denoted as

𝑑𝑝𝑤 (𝑠) =
𝑝𝑤

′(𝑠)
𝑠

=
4
3

{
0.75 − exp

[
− (𝑠 − 0.75)2

𝑤2

]}
. (48)

The evolution speed function 𝑑𝑝𝑤 (𝑠) in Equation (48) is inspired by evolution speed functions 𝑑𝑝2 (𝑠) in Equa-
tion (35). In DRLSE model [31], the evolution speed functions 𝑑𝑝2 (𝑠) in Equation (35) has a slow final conver-
gence speed due to a small slope at one well potential |∇𝜙| = 1 as shown in Figure 2. Note that the one well
potential is defined at |∇𝜙| = 1 by convention [31]. The motivation of 𝑑𝑝𝑤 (𝑠) is to raise the slope at one well
potential |∇𝜙| = 1 to solve the issue of slow convergence speed of 𝑑𝑝2 (𝑠) in Equation (35), which also increases
the sensitivity of distance regularized term 𝑘1

∫
Ω
𝑝𝑤 ( |∇𝜙|)𝑑𝑥 in Equation (40).

Applying the gradient descentmethod tominimize energy function in Equation (40), which obtains the flowing
gradient descent flow equation as follows:

𝜕𝜙𝐹𝐶𝑀

𝜕𝑡
= −𝜕𝐸

𝐹𝐶𝑀 (𝜙)
𝜕𝜙

= 𝑘1 div
(
𝑑𝑝𝑤 (|∇𝜙|)∇𝜙

)
+ 𝑘2𝛿𝜀 (𝜙) div

(
𝑔𝛽1

∇𝜙
|∇𝜙 |

)
+ 𝜑

(
𝐼𝜎1 , 𝐶1, 𝐶2

)
𝑔𝛽1𝛿𝜀 (𝜙). (49)

In Equation (49), the gradient descent flow function is mainly made up of two components. The first compo-
nent is the internal energy part that contains distance regularized term (𝑘1 div

(
𝑑𝑝𝑤 ( |∇𝜙 |)∇𝜙

)
), which offsets

the deviation between the sign distance function (SDF) and level set function to resolve the problem of re-
peated initialization during the process of evolution. The second component is the external energy part that
consists of length constraint part (𝑘2𝛿𝜀 (𝜙) div

(
𝑔𝛽1

∇𝜙
|∇𝜙|

)
) and area part (𝜑

(
𝐼𝜎1 , 𝐶1, 𝐶2

)
𝑔𝛽1𝛿𝜀 (𝜙)). The length

constraint term is utilized to guide the zero level to evolve towards target boundary as well as control contour
length due to the effect of the adaptive edge indicator function 𝑔𝛽1 . The area term is used to adjust contour ve-
locity through the effect of adaptive sign function 𝜑

(
𝐼𝜎1 , 𝐶1, 𝐶2

)
, which achieves bidirectional evolution with

respect to image grayscale value.

To better understand the working mechanism of FCM model, the corresponding flow chart is illustrated in
Figure 1. Note that the convergence criterion is set as | (𝑆𝑖+5 − 𝑆𝑖) /𝑆 | < 10−5, and 𝑆 signifies the entire area of
input image.

FCM model is characterized by pre-fitting the fuzzy two centroids inside and outside the contour line using
the local area-based fuzzy C-mean clustering principle before iteration to construct an adaptive edge indicator
function, which solves the one-way motion problem of the edge level set model. However, FCM algorithm
applied in this model is unoptimized and complex, which results in relatively long segmentation time. In
addition, segmentation may fail in the forms of falling into false boundaryboundaries, if FCM algorithm has
poor performance.
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Figure 1. The flow chart of FCMmodel.

3.3. Hybrid ACMs
3.3.1. Optimized local pre-fitting image model
To achieve better segmentation accuracy and reduce computation cost, OLPFI model [70] is proposed to as-
sociate region-based attributes and edge-based attributes through mean local pre-fitting functions, which is
capable of effectively segments segmenting images with uneven intensity and noise disturbance.

OLPFI energy function is defined as

𝑒OLPFI (𝜙(𝑥)) = 𝐴

2

∫
Ω

∫
Ω
𝐾𝜎 (𝑦 − 𝑥)

��𝐼 (𝑥) − 𝑓 𝐿𝑃𝐹𝐼 (𝑥, 𝜙(𝑥))
��2 𝑔𝑒 (𝑥)𝑑𝑥𝑑𝑦. (50)

Note that 𝐴 is a positive variable used to manually adjust segmentation speed according to the target size; 𝐾𝜎
is the Gaussian kernel function with standard deviation 𝜎; the edge indicator function 𝑔𝑒 (x) is defined as

𝑔𝑒 (𝑥) = 1 − 2
𝜋

arctan
(
|∇ (𝐼 ∗ 𝐾𝜎) |2 /𝜏

)
, (51)

where 𝜙 is the level set function; 𝜏 = std 2(𝐼 (𝑥)) is the standard deviation of the image in the matrix form.

There are 4 variables 𝐴, 𝜎, 𝑤, 𝑘 to be manually calibrated to meet the ideal segmentation results. Specifically,
variable 𝐴 is used to adjust segmentation speed according to target size to prevent issues of under- segmenta-
tion or over- segmentation; variable 𝜎 in Gaussian kernel function 𝐾𝜎 is properly adjusted to collect image
information locally with respect to object size to prevent issues of under- segmentation or over- segmentation;
variable 𝑘 is themagnitude of average filter, which is appropriately calibrated to filter out irrelevant information
and obtain a smoothed final contour; variable 𝑤 is the size of small local region, which should be increased or
decreased properly to entirely cover targets in the input image. In addition, variable 𝑤 should be increased to
filter out noise and unrelated pixel information while segmenting images with strong noise disturbance.
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In Equation (50), the local pre-fitted image (LPFI) function is defined as

𝑓 𝐿𝑃𝐹𝐼 (𝑥, 𝜙(𝑥)) = 𝐿1(𝑥)𝐻𝜀 (𝜙(𝑥)) + 𝐿2(𝑥) (1 − 𝐻𝜀 (𝜙(𝑥))) , (52)

with 𝐿1(𝑥) and 𝐿2(𝑥) {
𝐿1(𝑥) = min [𝐼 (𝑦) | 𝑦 ∈ Ω𝑥] ,
𝐿2(𝑥) = max [𝐼 (𝑦) | 𝑦 ∈ Ω𝑥] ,

(53)

whereΩ𝑥 denotes a small rectangular local area with size (2𝑤+1)2 at center point x; 𝐼 (y) denotes the gray values
of all points y in Ω𝑥 ; these two pre-fitting functions 𝐿1(𝑥), 𝐿2(𝑥) of OLPFI model are inspired by local fitting
function 𝑚1(𝑥), 𝑚2(𝑥) of LIF model in Equation (21). Specifically, 𝑚1(𝑥), 𝑚2(𝑥) in Equation (21) have to be
computed for curve evolution during each iteration, which means that n iterations will calculate 𝑚1(𝑥), 𝑚2(𝑥)
n times. Therefore, LIF model has slow segmentation speed and heavy computation cost due to unoptimized
fitting functions 𝑚1(𝑥), 𝑚2(𝑥). To address this issue, pre-fitting functions 𝐿1(𝑥), 𝐿2(𝑥) in in Equation (53)
quickly pre-calculates the foreground and background of the input image ahead of iteration process and are
independent of iteration process, which saves a great amount of computation time and confers much faster
segmentation speed than LIF model. Utilizing the standard descent method to minimize the energy function
in Equation (50), which obtains the following gradient descent flow function as follows:

𝜕𝜙

𝜕t
= −𝜕𝐸

𝑂𝐿𝑃𝐹𝐼

𝜕𝜙
= −𝐴𝛿𝜀 (𝜙) · (𝐿1 − 𝐿2) · 𝑔𝑒 (𝑥)

∫
Ω
𝐾𝜎 (𝑦 − 𝑥)

(
𝐼 − 𝑓 𝐿𝑃𝐹𝐼

)
𝑑𝑦. (54)

Note that the globalminimizer can be computed point by point by simply solving 𝜙(𝑥) := argmin
𝜓∈R

��𝐼 (𝑥) − 𝑓 𝐿𝑃𝐹𝐼 (𝑥, 𝜓)
��.

However, to follow up the convention, the method of partial derivative equation (PDE) is applied to conduct
the optimization process. The PDE approach also provides an opportunity to regularize the level set function
at each time step as described in Equation (58), which improves the segmentation performance.

In order to improve segmentation performance, Equation (54) is rewritten as

𝜕𝜙𝑂𝐿𝑃𝐹𝐼

𝜕t
= −𝐴𝛿𝜀 (𝜙) · esign( ℎ(𝑥)

𝜏
· g𝑒 (𝑥)), (55)

where esign (·) and ℎ(𝑥) respectively defined as

esign(𝑥) = sign(𝑥)
(
1 − 𝑒−𝑥2

)
, (56)

ℎ(𝑥) = (𝐿1 − 𝐿2) [𝐼 (𝐾𝜎 ∗ 1) − 𝐾𝜎 ∗ ((𝐿1 − 𝐿2) 𝐻𝜀 (𝜙)) − 𝐾𝜎 ∗ 𝐿2] . (57)

In order to effectively regularize the level set function and smooth evolution curve, a regularization function
𝜙𝑅 and a length constraint function 𝜙𝐿 are respectively defined as

𝜙𝑅 = esign
(
8 · 𝜙𝑖+1

)
,

𝜙𝐿 = mean (𝜙𝑅 (𝑦) | 𝑦 ∈ Ωx) ,
(58)

where the regularization function 𝜙𝑅 is used to regularize the level set function 𝜙 to generate a more stable
evolution environment; length constraint function 𝜙𝐿 is utilized to get rid of unrelated curves as well as shorten
and smooth evolution curves through an average filter with size 𝑘 × 𝑘 .

In Equation (58) 𝜙𝑖+1 is the level set function 𝜙 at (i+1)-th iteration, which follows level set evolution function
defined as

𝜙𝑖+1 = 𝜙𝑖 + Δ𝑡 · 𝜕𝜙
𝑂𝐿𝑃𝐹𝐼

𝜕𝑡
, (59)
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where Δ𝑡 is time interval; 𝜙𝑖 is the level set function 𝜙 at i-th iteration; 𝜕𝜙𝑂𝐿𝑃𝐹𝐼/𝜕𝑡 is defined in Equation (55).
OLPFI model combines local pre-fitting image functions based on mean intensity and edge indicator function
to segment images with uneven intensity and noise interference, which achieves relatively high segmentation
accuracy. The pre-fitting function pre-computes local image intensity ahead of iteration, which achieves fast
image segmentation and greatly reduces the computation cost. However, the issue of under- segmentation
may take place when segmenting images with noise interference due to the traditional Euclidean distance. In
addition, boundary leaking may sometimes occur in the form of broken curves when segmenting images with
large objects.

3.3.2. Pre-fitting energy model
To obtain better segmentation precision and decrease CPU elapsed time, PFE model [49] combines median
pre-fitting functions with optimized adaptive functions, which solves the issue of unidirectional motion of
evolution curve and hugely decreases computation cost.

PFE energy function is constructed as

𝐸𝑃𝐹𝐸 (𝜙) =𝑛1𝑅𝑝3 (𝜙) + 𝑛2𝐿𝑔𝑚 (𝜙) + 𝜑1 (𝐼𝜎 , 𝑐𝑙 , 𝑐𝑠) 𝐴𝑔𝑚 (𝜙)

=𝑛1

∫
Ω
𝑝3(|∇𝜙|)𝑑𝑥 + 𝑛2

∫
Ω
𝑔𝑚𝛿𝜀 (𝜙) |∇𝜙|𝑑𝑥 + 𝜑1 (𝐼𝜎 , 𝑐𝑙 , 𝑐𝑠)

∫
Ω
𝑔𝛽𝑚𝐻𝜀 (−𝜙)𝑑𝑥,

(60)

where 𝑛1, 𝑛2, 𝑛3 are positive constants; 𝜙 is the level set function; 𝐼𝜎 is the image after Gaussian filtering;
𝐻𝜀 (𝜙(𝑥)) and 𝛿𝜀 (𝜙(𝑥)) are approximated Heaviside and Dirac functions defined in Equation (7) and Equation
(8) respectively; 𝜑1 (𝐼𝜎 , 𝑐𝑙 , 𝑐𝑠) denotes the adaptive sign function 𝜑 (𝐼𝜎 , 𝑐𝑙 , 𝑐𝑠) that is descried as

𝜑 (𝐼𝜎 , 𝑐𝑙 , 𝑐𝑠) = 𝑛3 arctan
[(
𝐼𝜎 − 𝑐𝑙 + 𝑐𝑠

2

)
/𝜏

]
. (61)

Note that 𝜏 = std 2(𝐼 (x)) is the standard deviation of the image in the matrix form; the adaptive edge indicator
function 𝑔𝑚 (𝐼) is

𝑔𝑚 (𝐼) = 1 − tanh
|∇𝐾𝜎 ∗ 𝐼 |2

𝑚
, (62)

𝑚(𝐼) = 2𝑆 (𝐼𝜎) , (63)

with 𝑆 denoting the standard deviation of image after Gaussian filtering; 𝐼𝜎 = 𝐾𝜎 ∗ 𝐼 is the image after Gaussian
filtering, and 𝐾𝜎 is a Gaussian filtering template with standard deviation 𝜎; two pre-fitting functions 𝑐𝑙 ,𝑐𝑠 are
defined as 

𝑓median (x) = median (𝐼 (y) | y ∈ Ωx) ,
𝑐𝑙 (x) = mean (𝐼 (y) | y ∈ Ω𝑙) ,
𝑐𝑠 (x) = mean (𝐼 (y) | y ∈ Ω𝑠) ,

(64)

where 𝑓median denotes the median intensity in a local area Ωx centered at point x with radius w; 𝑐𝑙 and 𝑐𝑠 are
average intensities inΩ𝑙 andΩ𝑠, respectively; 𝐼 (y) signifies a local area at center point y; parameter x denotes
the center point of initial contour. As known that the fitting functions of RSFmodel in Equation (16) are unop-
timized and complex, which results in huge computation costs and low segmentation efficiency. To solve this
drawback, these pre-fitting functions of PFE model in Equation (64) quickly fit out the foreground and back-
ground before iteration process takes place and are independent of it, which dramatically saves computation
cost and increases segmentation efficiency.

In Equation (64), Ω𝑙 and Ω𝑠 are respectively defined as follows:{
Ω𝑙 = {y | (𝐼 (y) > 𝑓median (x)} ∩Ωx,
Ω𝑠 = {y | (𝐼 (y) < 𝑓median (x)} ∩Ωx.

(65)
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Note that Ω𝑙 is the local region inside Ωx, where the image intensities are all bigger than 𝑓median in Ωx; Ω𝑠 is
the local region inside Ωx, where the image intensities are all less than 𝑓median in Ωx.

The single potential function 𝑝3(𝑠) and its corresponding evolution speed function 𝑑𝑝3 (𝑠) are constructed as

𝑝3(𝑠) =


1
3 𝑠

3 + 1
𝜋3 sin(𝜋(𝑠 − 1)) − 𝑠

𝜋2 cos(𝜋(𝑠 − 1)),
− 1

2 𝑠
2 + 1

6 + 1
𝜋2 , 𝑠 ∈ [0, 1],

1
2 𝑠

2 − arctan
(
𝑠2
)
− 1

2 + 𝜋
4 , 𝑠 ∈ [1, +∞),

(66)

𝑑𝑝3 (𝑠) =
𝑝′3(𝑠)
𝑠

=

{
𝑠 + 1

𝜋 sin(𝜋(𝑠 − 1)) − 1, 𝑠 ∈ [0, 1],
1 − 2

1+𝑠4 , 𝑠 ∈ (1,∞). (67)

The evolution speed function 𝑑𝑝3 (𝑠) in Equation (67) is inspired by evolution speed functions 𝑑𝑝2 (𝑠) of DRLSE
model in Equation (35), 𝑑𝑝𝑤 (𝑠) of FCMmodel in Equation (48). In order to visualize these complex evolution
speed functions and explain the differences among them, all three evolution speed functions 𝑑𝑝2 (𝑠) , 𝑑𝑝𝑤 (𝑠) ,
𝑑𝑝3 (𝑠) are plotted in Figure 2. In this figure, the evolution speed functions 𝑑𝑝2 (𝑠) , 𝑑𝑝𝑤 (𝑠) achieve the maximum
value of 1 at zero well potential (|∇𝜙| = 0), which causes the evolution speed of 𝑑𝑝2 (𝑠) , 𝑑𝑝𝑤 (𝑠) to be too fast,
and the evolution curve may invade inside target interior. On the contrary, the evolution speed function
𝑑𝑝3 (𝑠) obtains the minimum value of −1, which decelerates evolution speed to achieve stable evolution and
avoid wrong segmentation. In addition, the evolution speed function 𝑑𝑝3 (𝑠) has the steepest slope at one well
potential (|∇𝜙| = 1) among all three evolution speed functions 𝑑𝑝2 (𝑠) , 𝑑𝑝𝑤 (𝑠) , 𝑑𝑝3 (𝑠) , whichmeans the evolution
speed function 𝑑𝑝3 (𝑠) facilitates the convergence process in a faster speed than 𝑑𝑝2 (𝑠) , 𝑑𝑝𝑤 (𝑠) as well as enables
the distance regularization term more sensitive.

Applying the steepest descent approach to minimize the energy function in Equation (60), which achieves the
following gradient descent flow function as

𝜕𝜙

𝜕𝑡
= −𝜕𝐸

𝑃𝐹𝐸 (𝜙)
𝜕𝜙

= 𝑛1 div
(
𝑑𝑝3 (|∇𝜙|)∇𝜙

)
+ 𝑛2𝛿𝜀 (𝜙) div

(
𝑔𝑚

∇𝜙
|∇𝜙 |

)
+ 𝜑1 (𝐼𝜎 , 𝑐𝑙 , 𝑐𝑠) 𝑔𝑚𝛿𝜀 (𝜙). (68)

In Equation (68), the gradient descent flow function consists of three parts. The first part denotes internal
energy (𝑛1 div

(
𝑑𝑝3 (|∇𝜙|)∇𝜙

)
) on the basis of distance regularized term, which is used to minimize the dif-

ference between level set function and sign distance function to solve the issue of repeated re-initialization
during iteration process. The second part signifies external energy on the foundation of length constraint part
(𝑛2𝛿𝜀 (𝜙) div

(
𝑔𝑚

∇𝜙
|∇𝜙|

)
) and area part (𝜑1 (𝐼𝜎 , 𝑐𝑙 , 𝑐𝑠) 𝑔𝑚𝛿𝜀 (𝜙)). Specifically, the length constraint part guides

the contour line to evolve towards the target boundary due to the effect of adaptive edge indicator function as
well and adjusts the length of contour line. The area part controls the velocity of contour line with respect to
image gray-scale information due to the effect of adaptive sign function.

PFE model combines energy function based on median pre-fitting functions with adaptive functions, which
realizes and accelerates the bidirectional evolution of contour line and reduces the probability of edge leakage.
In addition, this model is able to effectively handle images with uneven intensity. However, the issues of falling
into false boundary boundaries and insufficient segmentation at the boundary edge may sometimes happen
while segmenting images with a large target.

4. EXPERIMENTAL RESULTS
Different kinds of ACMs have been reviewed in Section 3 and Section 4, and 12 representative of those mod-
els (BC [32], RSF [34], LIF [35], LPF [48], RSF&LoG [39], OLPFI [70], PBC [57], LPF&FCM [41], LGJD [58], ABC [56],
PFE [47], APFJD [49]) are selected to conduct comparison experiment to segment various images including syn-
thetic images, medical images, and natural images and compare their segmentation results (The CPU running
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Figure 2. Contrast of DRLSE, FCM, PFE models on evolution speed equations 𝑑𝑝2 (𝑠) , 𝑑𝑝𝑤 (𝑠) , 𝑑𝑝3 (𝑠) .

time 𝑇 , iteration number 𝑁 , IOU, and DSC). All the models wereas programmed utilizing MATLAB 2021a
and run ran on an AMD Ryzen7 5800H 3.2GHz CPU, 16G RAM, a NVIDIA GeForce RTX 3060 6G GPU, and
64 bit Windows 11 operating system. To explain the time consumed by convolution operation, using APFJD
model on image (a) in Figure 4, the CPU running time𝑇 is 1.528 seconds, and the computation of convolutions
accounts for 70% of that time. The relevant codes are available on the website https://github.com/sdjswgr.

Common evaluation criteria for assessing different segmentation approaches are segmentation time and seg-
mentation quality. The authors evaluate segmentation time through the CPU running time 𝑇 and iteration
number 𝑁 . The smaller their values, the less segmentation time and better segmentation efficiency will be. In
addition, the segmentation quality of segmented image is measured through Intersection over union (IOU),
which is described as

IOU =
𝐴1 ∩ 𝐴𝐺1
𝐴1 ∪ 𝐴𝐺1

. (69)

Note that 𝐴1 signifies the foreground region of the segmented image while 𝐴𝐺1 denotes the foreground region
of the ground-truth image. The IOU value is used to measure the similarity between the foreground region of
segmented image and ground-truth image to evaluate the segmentation quality. The range of this coefficient
is bounded in [0, 1], and the closer it is to 1, the better segmentation quality it is.

4.1. Dataset characteristic
All images utilized in this paper are downloaded from a public open source image library called Berkeley
segmentation data set and Benchmarks 500 (BSDS500), which can be reached on the website https://www2
.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/ for more details. Specifically, for medical images (a-h)
in Figure 4, images (a-b) are blood capillaries, image (c) is CT of bone, images (d) is bacteria embryo, image
(e) is kidney, image (f) is the internal structure of the brain, and images (g-h) are B-ultrasound of uterus. For
natural images (a-h) in Figure 5, image (a) is a piece of maple leaf, image (b) is a shell, image (c) is a starfish,
image (d) is a polar bear, image (e) is a bradypod, image (f) is a stone bench, image (g) is plane, and image (h)
is an eagle.

http://dx.doi.org/10.20517/ir.2023.02
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Figure 3. The segmentation results of the first comparative experiment to segment synthetic images. The 1st row represents initial contours,
the 2nd to 12th rows denote segmentation results of BC [32], RSF [34], LIF [35], LPF [48], RSF&LoG [39], OLPFI [70], PBC [57], LPF&FCM [41],
LGJD [58], ABC [56], PFE [47], and APFJD [49], respectively.
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Table 1. Numerical analysis of segmentation results (The CPU running time 𝑇, iteration number 𝑁 , and IOU) of the first comparative
experiment in images a-h in Figure 3.

Image(a)(100 × 100) Image(b)(132 × 103) Image(c)(256 × 233) Image(d)(136 × 132) Image(e)(103 × 97) Image(f)(214 × 209) Image(g)(100 × 100) Image(h)(127 × 107)

BC 2.159/20/0.928 7.726/180/0.799 10.288/200/0.711 1.015/30/0.552 9.912/200/0.836 7.445/180/0.914 7.831/180/0.820 18.086/300/0.581

RSF 2.875/300/0.718 5.928/300/0.784 18.380/300/0.309 12.776/220/0.207 23.527/500/0.256 15.856/300/0.929 14.628/300/0.832 19.251/300/0.499

LIF 1.468/200/0.917 2.658/150/0.835 13.895/200/0.408 5.315/180/0.211 15.563/200/0.547 10.814/200/0.729 10.412/200/0.941 1.047/120/0.688

LPF 5.221/300/0.662 5.117/300/0.780 10.429/500/0.433 4.585/220/0.267 5.606/300/0.553 23.248/500/0.927 3.148/150/0.945 1.425/120/0.431

RSF&LoG 5.751/200/0.674 6.853/200/0.683 10.635/300/0.701 4.856/180/0.554 7.963/200/0.944 20.835/300/0.879 4.258/100/0.949 1.125/100/0.503

OLPFI 0.961/60/0.945 4.754/200/0.727 8.758/200/0.394 1.021/60/0.880 5.761/200/0.945 8.635/200/0.758 7.468/180/0.714 1.249/65/0.604

PBC 6.142/300/0.882 5.856/300/0.587 8.967/300/0.593 1.165/90/0.796 4.821/200/0.951 8.617/300/0.935 5.804/200/0.918 0.346/65/0.571

LPF&FCM 3.494/300/0.876 5.108/300/0.661 7.752/300/0.717 0.543/85/0.875 3.264/280/0.949 9.822/300/0.920/0.958 3.365/200/0.913/0.954 0.449/60/0.731

LGJD 3.952/200/0.725 4.585/200/0.515 5.856/250/0.874 3.658/200/0.230 8.635/300/0.611 7.423/300/0.894 10.528/300/0.939 1.437/120/0.474

ABC 0.641/20/0.958 6.589/300/0.415 15.254/300/0.576 0.196/20/0.855 8.111/300/0.931 3.856/150/0.941 5.964/250/0.934 7.215/280/0.575

PFE 2.964/150/0.803 3.589/180/0.834 5.545/200/0.879 0.248/90/0.891 3.132/180/0.954 12.826/600/0.902 3.792/180/0.926 0.237/90/0.812

APFJD 0.855/65/0.917 1.856/100/0.795 6.982/250/0.820 0.285/65/0.838 3.915/200/0.936 4.570/200/0.878 3.253/180/0.924 0.958/100/0.610

4.2. Segmentation experiment of synthetic images
Intensity non-uniformity and noise interference often occur in image segmentation. In Figure 3, the segmen-
tation results of the 12 ACMs on synthetic images (a-h) are described in Figure 3. The former 4 images (a-d)
represent images with intensity non-uniformity, while the latter 4 images (e-h) symbolize images with noise
interference. The associated segmentation quality (IOU) and segmentation time (the CPU running time𝑇 and
iteration number 𝑁) are concluded in Table 1. From this table, for images with intensity non-uniformity (a-
d), ABC, LIF, and PFE models respectively obtain better segmentation results than other models respectively.
In addition, for images with noise interference (e-h), PFE, ABC, LPF achieve the best segmentation results
respectively. Particularly, PFE model achieves the most stable segmentation results for all images with noise
interference (a-h) in Figure 3. In fact, PFE model takes advantage of novel pre-fitting functions to quickly
approximate the background and foreground of the input image ahead of iteration process, which improves
the stability of segmenting noisy images and saves computation costs.

Table 2. Numerical analysis of segmentation results (The CPU running time 𝑇, iteration number 𝑁 , and IOU) of the second comparative
experiment in images a-h in Figure 4.

Image(a)(111 × 110) Image(b)(103 × 131) Image(c)(112 × 224) Image(d)(152 × 128) Image(e)(124 × 66) Image(f)(119 × 78) Image(g)(200 × 227) Image(h)(95 × 93)

BC 5.725/380/0.733 2.407/180/0.766 2.958/250/0.815 4.176/280/0.899 5.285/300/0.835 15.992/150/0.607 1.437/30/0.889 2.564/200/0.633

RSF 2.458/300/0.844 2.152/140/0.825 1.886/120/0.852 4.537/200/0.898 4.852/200/0.756 23.974/200/0.622 14.733/220/0.207 10.511/220/0.433

LIF 1.525/130/0.851 1.234/100/0.826 1.458/100/0.868 3.172/150/0.909 2.912/130/0.723 15.254/150/0.675 2.305/120/0.714 2.859/100/0.572

LPF 1.621/140/0.862 1.575/100/0.802 2.245/150/0.932 5.109/180/0.916 1.852/120/0.781 1.653/120/0.635 0.995/100/0.442 1.595/120/0.447

RSF&LoG 1.062/100/0.870 1.250/80/0.821 5.582/150/0.934 9.926/200/0.829 2.952/135/0.779 16.582/200/0.718 8.289/200/0.849 1.252/120/0.601

OLPFI 0.805/80/0.875 0.905/85/0.837 1.584/90/0.935 0.925/85/0.925 0.848/95/0.850 1.465/120/0.604 2.048/150/0.835 0.652/65/0.918

PBC 1.689/120/0.866 1.612/100/0.831 4.773/250/0.926 3.593/180/0.931 3.525/150/0.845 1.081/100/0.784 1.509/100/0.867 1.653/100/0.906

LPF&FCM 0.952/100/0.861 0.896/85/0.838 2.545/150/0.896 3.862/180/0.905 2.465/150/0.893 1.868/120/0.653 7.269/200/0.864 1.058/100/0.889

LGJD 3.759/280/0.796 2.225/150/0.815 2.587/100/0.932 2.726/200/0.910 3.582/220/0.724 3.341/280/0.689 2.758/180/0.204 3.582/200/0.513

ABC 1.259/100/0.885 1.036/95/0.838 2.848/120/0.930 2.033/85/0.930 0.629/35/0.928 3.258/120/0.692 0.821/85/0.919 1.275/95/0.898

PFE 1.028/100/0.869 0.855/80/0.841 2.257/110/0.933 0.846/90/0.942 0.911/90/0.902 2.586/200/0.573 0.986/100/0.898 0.856/95/0.912

APFJD 1.528/105/0.728 1.043/95/0.815 1.585/110/0.899 1.852/120/0.851 0.506/30/0.926 1.962/120/0.662 1.399/100/0.889 1.124/100/0.894

4.3. Segmentation experiment of medical images
ACMs are extensively applied to processmedical images to find out the location of the lesion. Consequently, the
12 ACMs are utilized to segment 6 medical images (a-h) in Figure 4, and the associated segmentation quality
(IOU) and segmentation time (the CPU running time 𝑇 and iteration number 𝑁) are described in Table 2.
From this table, for image (a), OLPFI has the best performance. For image (b), OLPFI, LPF&FCM, ABC, PFE
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Figure 4. The segmentation results of the second comparative experiment to segment medical images. The 1st row represents initial con-
tours, the 2nd to 12th rowsdenote segmentation results of BC [32], RSF [34], LIF [35], LPF [48], RSF&LoG [39], OLPFI [70], PBC [57], LPF&FCM [41],
LGJD [58], ABC [56], PFE [47], and APFJD [49], respectively.

models have very similar segmentation results. However, PFE model is ranked first in terms of the least CPU
running time 𝑇 and iteration number 𝑁 and the largest IOU value. For image (c), LPF, RSF&LOG, OLPFI,
LGJD, ABC, PFE models have similar segmentation results. Nevertheless, OLPFI has the best performance
with a small advantage. For image (d), the performance of PFE model is ranked first in terms of all evaluation
criteria. For image (e), the IOU value of ABC model are is the biggest, while the CPU running time 𝑇 and
iteration number 𝑁 of APFJD model is are the least. For image (f), PBC obtains the best segmentation results.
For image (g), ABC model obtains the best performance in terms of all evaluation criteria. For image (h),
OLPFI model has the best segmentation results in terms of all evaluation criteria. Particularly, ABC model
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Table 3. Numerical results of segmentation outcomes (The CPU running time 𝑇, iteration number 𝑁 , and IOU) of the third comparative
experiment in images a-h in Figure 5.

Image(a)(300 × 203) Image(b)(300 × 225) Image(c)(481 × 321) Image(d)(481 × 321) Image(e)(481 × 321) Image(f)(481 × 321) Image(g)(481 × 321) Image(h)(481 × 321)

BC 1.221/10/0.950 2.967/50/0.734 5.775/120/0.602 2.315/20/0.161 2.940/25/0.231 7.567/150/0.162 7.491/150/0.289 8.722/150/0.837

RSF 1.043/220/0.952 14.658/250/0.709 15.589/250/0.255 8.152/180/0.926 7.254/165/0.543 8.952/180/0.582 18.892/380/0.637 10.866/150/0.826

LIF 1.716/150/0.964 2.536/200/0.879 7.895/180/0.405 9.255/500/0.657 5.752/150/0.592 6.895/150/0.841 7.125/180/0.775 6.525/150/0.870

LPF 1.115/90/0.969 1.531/100/0.841 9.528/300/0.617 10.588/380/0.922 12.592/300/0.377 15.281/300/0.581 4.338/120/0.543 5.450/120/0.781

RSF&LoG 5.741/100/0.893 6.952/120/0.941 8.258/180/0.524 7.528/120/0.840 7.592/150/0.587 10.896/180/0.844 6.882/120/0.505 3.317/95/0.817

OLPFI 0.506/40/0.955 0.731/65/0.951 1.638/95/0.889 0.546/40/0.927 1.867/95/0.794 1.105/85/0.794 1.983/100/0.757 1.513/100/0.753

PBC 0.696/85/0.954 1.984/95/0.929 7.595/200/0.824 1.856/95/0.924 8.215/200/0.791 3.148/120/0.823 4.768/150/0.904 1.233/95/0.845

LPF&FCM 2.524/120/0.958 3.158/150/0.889 13.752/300/0.515 7.181/180/0.871 10.537/200/0.858 9.905/200/0.863 9.389/200/0.801 7.851/180/0.831

LGJD 0.715/95/0.886 1.985/100/0.919 5.589/180/0.563 2.755/120/0.135 11.762/300/0.791 3.556/120/0.815 2.789/120/0.876 2.511/120/0.873

ABC 0.785/80/0.951 1.259/95/0.954 9.785/200/0.507 1.895/100/0.903 7.892/150/0.847 2.048/100/0.886 2.638/100/0.902 2.032/100/0.836

PFE 0.748/65/0.937 2.468/120/0.638 2.685/150/0.531 3.522/150/0.925 4.896/180/0.870 8.896/200/0.834 9.541/230/0.816 3.522/120/0.877

APFJD 0.591/30/0.971 1.167/100/0.966 2.592/120/0.927 1.047/100/0.924 1.972/100/0.869 2.925/120/0.913 1.045/95/0.906 1.161/100/0.886

obtains the most stable segmentation results for all images (a-h) in Figure 4. Actually, ABC model utilizes a
novel regularization function to normalize the energy range of data driven term, which enables it to effectively
process medical images with intensity non-uniformity.

4.4. Segmentation experiment of natural images
The 12 ACMs are applied to segment natural images (a-h) in Figure 5, and the associated segmentation quality
(IOU) and segmentation time (the CPU running time 𝑇 and iteration number 𝑁) are described in Table 3.

In Table 3, for image (a), the IOU value of LPFmodel is the largest while the CPU running time𝑇 and iteration
number 𝑁 of OLPFI model are the least. For image (b), OLPFI model is ranked first in terms of the CPU
running time 𝑇 and iteration number 𝑁 , and APFJD model is ranked first with respect to the IOU value. For
image (c), OLPFImodel has the best performance in terms of the CPU running time𝑇 and iteration number 𝑁 ,
while APFJD model has the best performance with respect to the IOU value. For image (d), RSF, LPF, OLPFI,
PBC, PFE, and APFJD models achieve similar segmentation results. However, OLPFI model is ranked first
with respect to all evaluation criteria. For image (e), the IOU value of the PFE model are is the biggest, while
the CPU running time 𝑇 and iteration number 𝑁 of OLPFI model are the least. For image (f), the IOU value
of APFJD model is the biggest, while the CPU running time 𝑇 and iteration number 𝑁 of OLPFI model are
the least. For image (g), although the IOU value of PBC, ABC, and APFJD models are similar, APFJD model
has the best segmentation results with the biggest IOU value and lowest CPU running time 𝑇 and iteration
number 𝑁 . For image (h), APFJD model has the best segmentation results in terms of all evaluation criteria.
On average, APFJD model acquires the most stable segmentation results for all natural images (a-h) in Figure
5. In fact, APFJD model employs an adaptive regularization function to normalize the ranges of the level set
function and data driven term, which renders it to efficiently process natural images with complex background
information.

4.5. Comparison experiments with Deep learning-based algorithms
To compare the segmentation results betweenACMs and deep learning-based algorithms, DeepLabv3+ [71] and
Mask R-CNN algorithms [72] are selected to segment 6 images (a-f) in Figure 6. Note that DeepLabv3+ and
Mask R-CNN algorithms are capable of recognizing all pixels subordinated to the target and painting the target

0Bias correction (BC), Region scalable fitting (RSF), Local image fitting (LIF), Local pre-fitting (LPF), Region scalable fitting and opti-
mized Laplacian of Gaussian (RSF&LoG), Optimized local pre-fitting image (OLPFI), Pre-fitting bias field (PBC), Local pre-fitting and fuzzy
c-means (LPF&FCM), Local and global Jeffreys divergence (LGJD), Additive bias correction (ABC), Pre-fitting energy (PFE), and Adaptive
pre-fitting function and Jeffreys divergence (APFJD).
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Figure5. The segmentation results of the third comparative experiment to segment synthetic images. The 1st row represents initial contours,
the 2nd to 12th rows denote segmentation results of BC [32], RSF [34], LIF [35], LPF [48], RSF&LoG [39], OLPFI [70], PBC [57], LPF&FCM [41],
LGJD [58], ABC [56], PFE [47], and APFJD [49], respectively.

into multiple random colors to demonstrate the final segmentation result. For the pre-training stage of these
two deep learning-based algorithms, the DeepLabv3+ algorithm have has used PASCAL Visual Object Classes
2007 (VOC20007), which can be found on the website http://host.robots.ox.ac.uk/pascal/VOC/voc2007/. The
entire duration of pre-training stage of DeepLabv3+ neural network lasts roughly 9 hours under the framework
of PyTorch deep learning environment. In addition, theMaskR-CNNalgorithmutilizes the (CommonObjects
in Context) COCO dataset to conduct the pre-training process, which can be downloaded from the website
https://cocodataset.org/. Thewhole duration of pre-training stage of DeepLabv3+ neural network lasts roughly
18 hours under the framework of PyTorch deep learning environment. Once the pre-trainings are completed,
the trained DeepLabv3+ andMask R-CNNneural networks are utilized to segment and visualize 6 images (a-f)
in Figure 6 and compute their associated IOUs, which is illustrated in Figure 6. Meanwhile, the authors select
3 ACMs (RSF [34], LGJD [58], and APFJD [49]) to segment and visualize 6 images (a-f) in Figure 6 and calculate
their corresponding IOUs. The numerical segmentation results (IOUs) of the experiments are all listed in Table
4.

In Table 4, for image (a), the DeepLabv3+ algorithm obtains the biggest IOU value due to the most excellent
segmentation result. For image (b), the Mask R-CNN algorithm, RSF model and APFJD achieve similar IOU
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Figure 6. The segmentation results between DeepLabv3+ algorithm [71], Mask R-CNN algorithm [72], RSF [34] model, LGJD [58] model and
APFJD [49] model. The 1st column represents original images, the 2nd to 3rd columns signify segmentation results of DeepLabv3+ algo-
rithm and Mask R-CNN algorithm, respectively, the 4th column denotes initial contours of ACMs, and the 5th to 7th columns represent
segmentation results of RSF model, LGJD model and APFJD model, respectively.

Table 4. Numerical analysis of IOUs between DeepLabv3 algorithm, Mask R-CNN algorithm, RSF model, LGJD model, APFJD model in
images (a-f) in Figure 6.

DeepLabv3+ Mask R-CNN RSF LGJD APFJD

Image a(481 × 321) 0.935 0.807 0.681 0.853 0.920

Image b(481 × 321) 0.655 0.922 0.925 0.135 0.930

Image c(481 × 321) 0.875 0.883 0.826 0.873 0.886

Image d(481 × 321) 0.215 0.015 0.255 0.563 0.927

Image e(481 × 321) 0.911 0.895 0.328 0.321 0.468

Image f(321 × 481) 0.905 0.915 0.479 0.353 0.385

values. For image(c), the RSFmodel obtains the smallest IOU value due to the issue of edge leakage, and similar
results are achieved by the remaining models. For image (d), the DeepLabv3+ and Mask R-CNN algorithms
acquire very unsatisfactory IOU values due to failed segmentation. On the contrary, the APFJD model attains
the largest IOU value because of clear and clean segmentation. For image (e), the DeepLabv3+ and Mask
R-CNN algorithms demonstrate the advantages of segmentation of multi-phase images, which obtains much
bigger IOU values than 3 ACMs (RSF, LGJD, APFJD models). The DeepLabv3+ algorithm attains the largest
IOU value due to a more fully segmented target. For image (f), the Mask R-CNN algorithm obtains the best
segmentation result in terms of the biggest IOU value.

4.6. Summary
Since the images with unevenly distributed intensity, the area inside and outside evolution curves are not
intensity uniform. The calculated intensity averages are incapable tocannot represent intensity distribution.
Therefore, BC model estimates a bias field to process images with unevenly distributed intensity, which works
well with images (a-b) in Figure 3. However, common issues such as falling into false boundary boundaries
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may occur in images (c-d) in Figure 3. In addition, this model cannot effectively process images with noise
interference such as images (e, g, h) in Figure 3. BesidesAdditionally, under- segmentation may take place as
image (h) in Figure 3 and images (c, g) in Figure 4 shows. In addition, BC model leaks from target boundary
when it segments natural images, as the second row in the Figure 5 indicates.

RSF model is capable of segmenting images with uneven intensity as image (b) in Figure 3. However, the
incorporated kernel function only computes the gray values of image local image regions, which makes it
easy to fall into a local minimum during the process of energy minimization such as images (a, c) in Figure
3. Nevertheless, falling into a false area still remains unsolved as images (c, d, g) in Figure 3. In addition, the
segmentation time is long due to at least four convolution operations to update fitting functions during each
iteration. BesidesIn addition, this model has poor anti-noise ability, which is vulnerable to the influence of
noise interference, as images (e, g, h) illustrate. Moreover, the issues of under- segmentation and leaking from
weak edge still exists, as shown in images (c, e) in Figure 4 and images (g, h) in Figure 4, respectively. Lastly,
this model obtains poor segmentation results when segmenting natural images, as shown in the third row in
the Figure 5.

Compared with RSF model, LIF model only utilizes two convolution operations to update fitting functions,
which greatly reduces the CPU running time T and iteration number N according to Tables 1, 2, and 3. The
Gaussian kernel function is also used in thismodel, so common issues such as boundary leakage and falling into
local minimum also occur in this model in some cases (as illustrated in images (a, d, e) in Figure 3). However,
this model is still sensitive to noise interference, as shown in images (e, f, h) in Figure 3. BesidesAdditionally,
the problem of under- segmentation has been improved to some degree as shown in image (c) in Figure 4.
In additionFurthermore, this model has very poor segmentation results while segmenting natural images as
indicated in images (b, c, e, g) in Figure 5.

LPFmodel locally computes average image intensity ahead of iteration process, which reduces the computation
cost to some degree. However, the Gaussian kernel function is also used in this model to update the level set
function, which results in falling into false boundary boundaries (as described in image (a) in Figure 3) and
edge leakage (as illustrated in images (b, c, d) in Figure 3). In addition, this model has further improved in
terms of anti-noise ability as shown in images (f, g) in Figure 3. However, the issue of boundary leakage still
exists in images (e, h) in Figure 3 and images (g, h) in Figure 4 and images (e, f, g, h) in Figure 5. Besides, the
problem of trapping into false boundary boundaries still occurs in images (b, c) in Figure 5.

RSF&LoG model combines RSF model and Laplacian of Gaussian (LoG) energy to smooth the homogeneous
areas and enhance boundary characteristics simultaneously to segment images with uneven intensity, which
can segment images with uneven intensity to some extent. However, this model may create some common
issues such as under- segmentation and falling into false boundary boundaries in images (a, b, c) in Figure 3
and images (d, h) in Figure 3, respectively. In addition, boundary leakage may occur in some cases (as shown
in image (h) in Figure 4 and images (c, e) in Figure 5).

OLPFI model calculates the mean intensity of the selected local regions before iteration starts, which dramati-
cally decreases segmentation time. This model puts region-based attributes and edge-based attributes together
to handle images with intensity non-uniformity, which obtains excellent results as shown in image (a, d) in
Figure 3. However, under- segmentation often occurs in images (b, c, f, g, h) in Figure 3, image (e) in Figure
4, and images (a, g, h) in Figure 5. this This model has relatively poor anti-noise ability in the form of under-
segmentation as indicated in images (f, g, h) in Figure 3. Lastly, this model greatly reduces the possibility of
boundary leakage and falling into fake false boundaryboundaries.

PBCmodel utilizes the optimized FCM algorithm to estimate the bias field before iteration process, which gets
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rid of time-consuming convolution operation during each iteration and greatly reduces segmentation time. In
addition, thismodel can segment images with uneven intensity in images (a, d) in Figure 3. However, boundary
leakage may occur in some cases (as indicated in images (b, c) in Figure 3). Moreover, this model is capable
of effectively segmenting images with noise interference with high segmentation quality. Nevertheless, under-
segmentationmay occur in some cases (as indicated in images (h) in Figure 3, image (e) in Figure 4 and images
(a, e) in Figure 5). Lastly, falling into fake false boundary boundaries may take place in some cases (as shown
in images (b, c) in Figure 5).

LPF&FCM model employs the FCM algorithm and adaptive sign function to solve the issue of boundary
leakage, which obtains outstanding performance to segment images with intensity non-uniformity in images
(a, d) in Figure 3. However, issues such as under- segmentation and falling into local minima may occur in
some cases (as shown in images (b, c) in Figure 3 and images (b, c, g) in Figure 5, respectively). In addition,
this model has strong robustness to images with noise (as indicated in images (e-h) in Figure 3). Lastly, this
model is capable of effectively segmenting medical images (a-h) in Figure 4 with high accuracy.

LGJD model utilizes the changeable weights to control the local and global data fitting energies based on
Jeffreys divergence (JD), which is capable of segmenting images with intensity non-uniformity to some degree.
However, this model also has common issues such as over- segmentation or under- segmentation in some
cases (as shown in images (a, b, c) in Figure 3 and images (e, f, g) in Figure 5). In addition, boundary leakage
may occur during the process of segmenting images with noise interference in some cases (as illustrated in
image (e, h) in Figure 3). Besides, the issue of strapping into false boundary boundaries frequently takes place
in some cases (as shown in images (d) in Figure 3, images (g, h) in Figure 4, and images (a-d) in Figure 5).

ABCmodel applies the theory of bias field to segment imageswith unevenly distributed intensity, which obtains
excellent segmentation performance in terms of handling images with intensity non-uniformity in images (a,
d) in Figure 3. However, this model has issues of leaking from weak boundary boundaries in some cases
(as illustrated in images (b, c) in Figure 3). In addition, this model can effectively handle images with noise
interference due to the effect of additive bias correction as shown in images (e, f, g) in Figure 3. Nevertheless,
the problem of under- segmentation may happen in image (h) in Figure 4 and images (a, c) in Figure 5. Lastly,
this model is also able to effectively segment medical images (a-h) in Figure 4 with high precision.

PFE model computes the median intensity of the chosen local areas ahead of iteration process, which greatly
reduces computation cost. According to the twelfth row of Figure 3, this model is able to deal with images
with uneven intensity and has excellent noise resistivity. However, common issues such as falling into fake
false boundary boundaries and boundary leakage may take place in some cases (as indicated in image (c) in
Figure 3 and images (b, c, g) in Figure 5). Lastly, this model is also competent to effectively segment medical
images (a-h) in Figure 4 with high efficiency.

APFJD model computes average intensity of selected areas before iteration takes place, which dramatically
decreases segmentation time. This model can effectively segment images with uneven intensity and noise
interference due to the effect of JD, as shown in images (a-b, d) and images (e-f) in Figure 3. However, the issue
of strapping into false boundary boundaries may happen as indicated in image (c) in Figure 3). In addition,
under- segmentation may occur in some cases (as indicated in image (e) in Figure 3 and image (c, f) in Figure
4). Lastly, this model segments natural images (a-h) in Figure 5 with excellent accuracy.

To conclude the characteristic of above said ACMs, the calculation processes of BC, RSF, LIF, LPF, RSF&LoG,
and LGJD models are too complex to be implemented in practice, which have poor anti-noise capability and
spend a huge amount of time for curve evolution. In addition, the computation processes to compute pre-
fitting functions in OLPFI, PBC, PFE, and APFJD models are optimized, which enables them to quickly seg-
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ment different kinds of images within a short amount of time. LPF&FCM takes advantages of FCM clustering
to divide the input image region into background region and foreground region before iteration begins, which
greatly reduces the computational overhead. ABCmodel implements K-means ++ clustering to separate input
image area into background and foreground regions before iteration starts, which also hugely decreases the
computational expense. Nevertheless, LPF&FCM and ABC models may generate unexpected segmentation
outcomes such as redundant curves, if the FCM and K-means ++ clustering algorithms have bad performance.

Although ACMs can effectively segment double-phase images with fair segmentation results, the majority of
existing ACMs are not able to segment multi-phase images as indicated in images (e,f) in Figure 6. Note that
double-phase image means a target in an image either contains black pixels or white pixels, while multi-phase
image means a target in an images contains black and white pixels at the same time as shown in images (e,f)
in Figure 6. According to Figure 6, the deep learning-based algorithms (DeepLabv3+ and Mask R-CNN algo-
rithms) exhibit an advantage on in segmenting multi-phase images. Specifically, ACMs (RSF, LGJD, APFJD
models) can barely segment multi-phase images (e,f) in in Figure 6, while DeepLabv3+ and Mask R-CNN
algorithms obtain excellent segmentation results in terms of much bigger IOU value. However, failed segmen-
tation in the form of under- segmentation may take placeoccur while implementing DeepLabv3+ and Mask
R-CNN algorithms to segment double-phase images as illustrated in images (b,d) in Figure 6.

5. CHALLENGES AND PROMISING FUTURE DIRECTIONS
Nowadays, there are still various common issues waiting for solutions in the field of image segmentation in
practice. The review of the above ACMs points out some common issues and concludes some promising
future directions. It is believed that this discussion will be useful for later researchers in this field to design
more advanced models.

5.1. The combination of deep learning models
Inspired by the general idea of ACMs, the work [73–75] incorporates region and length constraint terms into
the cost or loss function of convolutional neural network (CNN) model based on traditional Dense U-Net
for image segmentation, which combines geometric attributes such as edge length with region information
to achieves better segmentation accuracy. In addition, compared with traditional ACMs requiring iterations
to solve PDEs, the employment of CNN greatly reduces computation cost in image segmentation, although
its training process is generally long. In addition, later researchers embed some loss functions in deep learn-
ing [76–81] in region-based level set energy functions to improve segmentation efficiency and accuracy. There-
fore, one can put the energy function of diverse ACMsmentioned in this paper and other segmentationmodels
in deep learning together to design some new hybrid energy functions to further improve segmentation per-
formance, which is recommended as a promising future research direction in the area of image segmentation.

5.2. The combination of edge-based and region-based ACMs
As discussed in this paper, active contour method can be grouped into two types: the region-based ACM
and the edge-based ACM. The region-based ACM utilizes a pre-defined region descriptor or a contour rep-
resentation to recognize each region on the image, while the edge-based ACM uses the differential property
or gradient information of boundary points to construct a contour representation. The region-based ACMs
generally utilize regional information (the pixel grayscale information) of the image to construct energy func-
tions, which improves their system robustness and effectiveness. However, the region-based ACMs cannot
deal with contours that do not evolve from region boundaries. The edge-based ACMs mainly use the gradient
information of the target boundary points as the main driving force to guide the motion of the evolution curve,
which is capable of handling topology changes adaptively. Nevertheless, the edge-based ACMs generally need
to reinitialize the level set function periodically during the evolution process, which will affect the computa-
tional accuracy and slow down segmentation efficiency. In this case, the zero level set may not be able to move
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towards the target boundary, and how and when to initialize it still remains unsolved.

Therefore, it is necessary to combine the strengths of the region-based and region-based ACMs to obtain
better segmentation outcomes. Recently, several hybrid ACMs [41,47,70,82,83] are constructed to take advantage
of bothmetrics of the region-based and edge-based ACMs to achieve higher segmentation efficiency and lower
computation cost. It is recommended that future researchers design more hybrid ACMs on the basis of the
hybrid ones mentioned above.

5.3. Fast and stable optimization algorithm
The general optimization process of ACMs is to minimize the associated energy function through gradient
or steepest descent method. However, it should be aware that it may be hard to figure out the global minima
if the energy function is non-convex [33,84–87], which may cause a failed segmentation in the form of falling
into a local minima. Specifically, the traditional gradient or steepest descent approach is initialized by the
initial level set function and then descends at each iteration, ; the descending direction is controlled by the
slope or the derivative of the evolution curve. It is possible to replace the traditional one with other gradient
descent methods to design a brand-new series of ACMs, which is capable of optimizing the evolution curve
and avoiding falling into local minima.

6. CONCLUSIONS
This paper has presented an overview of different kinds of ACMs in image segmentation in Sections 1, which
helps readers to obtain a comprehensive understanding of different kinds of ACMs. Then, some fundamental
theory of ACMs has been explained in Section 2. Specifically, region-based ACMs, edge-based ACMs, and
hybrid ACMs are reviewed in Section 3. After that, three comparison experiments of 12 different ACMs in
terms of several evaluation criteria (the CPU running time 𝑇 , iteration number 𝑁 , IOU and DSC) have been
conducted to compare their segmentation performance on different kinds of images (synthetic images, med-
ical images, and natural images) in Section 4. In addition, two deep learning-based algorithms (DeepLabv3+
and Mask R-CNN) have been implemented to segment double-phase images and multi-phase images, whose
segmentation results in terms of IOU values have been compared with several ACMs to demonstrate their
advantages and disadvantages. According to the experimental results of these comparison experiments, the
hybrid ACMs appear to be more suitable for large- scale image segmentation applications due to higher seg-
mentation efficiency and accuracy. In addition, the deep learning-based algorithms (DeepLabv3+ and Mask
R-CNN) obtain much superior segmentation results than ACMs while segmenting multi-phase images. Lastly,
some challenges and promising future research works in the field of image segmentation have been discussed
in Section 5.
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