Supporting Information

Nanostructured block copolymer single-ion conductors for low-temperature, high-voltage and fast charging lithium-metal batteries

Junli Shi¹, Huu-Dat Nguyen², Zhen Chen^{3,4}, Rui Wang⁵, Dominik Steinle^{3,6}, Lester Barnsley⁵, Jie Li⁷, Henrich Frielinghaus⁵, Dominic Bresser^{3,6}, Cristina Iojoiu^{2,8,*}, Elie Paillard^{7,*}

¹Helmholtz-Institute Muenster (IEK 12), Forschungszentrum Juelich GmbH, Münster 48149, Germany.

²Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP (Institute of Engineering Univ. Grenoble Alpes), LEPMI, UMR5279, Grenoble 38000, France.
³Helmholtz Institute Ulm (HIU), Ulm 89081, Germany.
⁴Key Laboratory of Engineering Dielectric and Applications (Ministry of Education), School

of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin 150080, Heilongjiang, China.

⁵Juelich Centre for Neutron Science at MLZ, Forschungszentrum Juelich GmbH, Garching 85747, Germany.

⁶Karlsruhe Institute of Technology (KIT), Karlsruhe 76021, Germany.

⁷Australian Synchrotron, The Australian Nuclear Science and Technology Organisation (ANSTO), Clayton 3168, Australia.

⁸Réseau sur le Stockage Electrochimique de l'Energie (RS2E), CNRS FR3459, Amiens Cedex 80039, France.

⁹Réseau sur le Stockage Electrochimique de l'Energie (RS2E), CNRS FR3459, Amiens Cedex 80039, France.

***Correspondence to:** Prof. Cristina Iojoiu, Université Grenoble Alpes, LEPMI, Grenoble 38000, France; CNRS, LEPMI, Grenoble 38000, France. E-mail: cristina.iojoiu@lepmi.grenoble-inp.fr; Prof. Elie Paillard, Department of Energy, Politecnico di Milano, Milan 20156, Italy. E-mail: <u>elieelisee.paillard@polimi.it</u>

Keywords: Polymer electrolyte, single-ion conductor, lithium metal, NMC, battery

Supporting Experimental Information

The lithium concentration (C_{Li}, meq Li⁺ per g of electrolyte) in the dried ionomer films was obtained determined from both ¹⁹F NMR spectra and acid-base titration of the ionomers in their acidic form as described elsewhere^[1]. The molecular mass (Mw, Mn) and polydispersity index (Ip) were determined by size exclusion chromatography coupled multi-angle laser light scattering (SEC-MALLS) with differential refractometer SOPARES RI2000 coupled to a multi-angles light scattering detector WYATT DAWN EOS at 690 nm by using 2xPLgel-Mixed-D as a column. The elution solvent was 0.1 M solution of NaNO₃ in dimethylformamide (Alfa Aesar-HPLC grade 99.7%), with flow rate of 1 mL/min. Injection of the sample solution was carried through the polypropylene filter of 0.2 µm.

Sample	C _{Li} , (meq. Li ⁺ g ⁻¹) (NMR)	C _{Li} , (<i>meq. Li</i> ⁺ g ⁻¹) (titration)	M _n (kg mot ⁻¹)	M _w (kg mot ¹)	Ip
SI05-05	1.02	1.00 ± 0.02	150	396	2.6
SI10-05	1.18	1.15 ± 0.03	165	362	2.2
SI15-05	1.28	1.25 ± 0.04	126	408	3.2

Table S1. Li concentration and molecular weights of copolymer samples

For testing the electrochemical stability window of the electrolytes, linear sweep voltammetry (LSV) was performed with a VMP3 potentiostat (Biologic) at 0.1 mV s⁻¹ in two-electrode 2032 coin cells. For the anodic sweep, a platinum (Pt) foil ($\emptyset = 6$ mm) was used as working electrode (WE) and a lithium foil ($\emptyset = 12$ mm) as combined counter (CE). For the cathodic sweep, a nickel (Ni) foil ($\emptyset = 12$ mm) was used as WE and a lithium foil was used as CE.

Figure S1. Electrochemical stability window of PTFSI-10/5-70 compared with 1M LiTFSI in PC for the anodic scan; inset: magnification of the onset of the current evolution at elevated potentials.

Figure S2. Cycling stability of a Li||LFP cell at 20 °C with PTFSI-10/5-70 as the electrolyte (cut-off voltages: 2.5 V and 4.1 V).

Figure S3. Cycling stability of a Li||NMC₁₁₁ cells at 20 °C with PTFSI-10/5-70 as the electrolyte (cutoff voltages: 2.8 V and 4.2 V).

Figure S4. Cycling stability of Li||NMC₆₂₂ cells at 0.5C after the rate capability tests at (a) 20 °C and (b) 0 °C (cut-off voltages: 2.8 V and 4.2 V).

Figure S5. Cycling stability of a Li||NMC₁₁₁ cell at 20 °C using PTFSI-10/5 with 70 wt% adiponitrile as the electrolyte (cut-off voltages: 2.8 V and 4.2 V).

Bibliography

1. L. Assumma, C. Iojoiu, R. Mercier, S. Lyonnard, H. D. Nguyen and E. Planes, J. Polym. *Sci Part Polym Chem* 2015;53:1941-56.