Supplementary Material: Ionic liquids and their derivatives for lithium batteries:

role, design strategy, and perspectives

Supplementary Table 1. Comparison of the use of ILs in liquid electrolytes for LMBs.

Electrolyte ^{a)}	Cathode ^{b)}	Capacity (mAh/g)	C-Rate	No. of cycles	Capacity retention (%)	Ref.
IL + Li-salt system	•				l	
[EMI][FSI]	LCO	~135	0.7C ^{c)}	1200	81	
+ 5M Li[FSI] + 0.16M Na[TFSI]	NMC811	181	0.5C	200	94	[1]
0 8[Dur.][FS]]	LRNM	~155	1C ^{c)}	2000	56.0	[2]
$0.8[Pyr_{1,4}][PS1]$	LTO	163	0.5C ^d)	2000	99.6	
0.221[1131]	NM88	~200	0.3C ^{c)}	1000	88	[3]
0.8[P _{4,4,4,4}][IM ₁₄]- 0.2Li[TFSI]	LRNM	250	0.1C ^{c)}	100	84.4	[4]
0.8[N _{2,2,1,201}][FTFSI]- 0.2Li[FTFSI]	LRNM	153	0.5C	500	65.5	[5]
1.2M Li[FSI] in [Pyr _{1,3}][FSI]	NMC811	189	0.2C ^{c)}	150	95	[6]
4.2M Li[FSI] in [Pyr _{1,3}][FSI]	NMC811	~180	1C ^{c)}	1000	~77	[7]
0.8[EMI][FSI]- 0.2Li[TFSI]	LRNM	~210	0.1C	50	~70	[8]
OLEs + ILs						
3M Li[TFSI] in 25% [Pyr _{1,3}][TFSI] +	LNMO	~110	1C	300	90	[9]

© The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, sharing, adaptation, distribution and reproduction in any medium or

format, for any purpose, even commercially, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

75% EC/DEC						
(1:1 v/v)						
1M Li[TFSI] in		~125	0.3C	200	64.8	
DOL/DME (1:1 v/v) +	NMC111	~125	10	200	57.6	[10]
25 vol% [Pyr _{1,201}][TFSI]		125	10	200	57.0	
1M Li[FSI] in						
[Pyr _{1,2O2}][TFSI]/DOL	LFP	160	0.2C	200	93	[11]
(4:1 v/v)						
1M Li[FSI] in						
DOL/DME (1:1 v/v) +						
20 wt%	LFP	~125	1C	500	76	[12]
0.9[BzMI][TFSI]-						
0.1[EMI][TFSI]						
1M [Pyr _{6,6}][FSI] + 1M	LFP	~160	1C ^{c)}	800	76.4	
Li[TFSI]	NMC622	~160	1C ^{c)}	600	80	[13]
in DOL/DME (1:1 v/v)	NMC622	~150	0.5C ^{c)}	250	78.2	
3.2mol kg ⁻¹ Li[FSI]	NMC811	~200	0.5C ^{c)}	300	80	
in [Pyr _{1,3}][FSI]/DME	NIMC622	~175	$0.14C^{\circ}$	200	07	[14]
(4:1 wt/wt)	INMC022		0.140	200		
1M LiPF ₆ in						
EC/DMC/DEC (1:1:1		120	10	100	00.2	
v/v/v) + 0.3M	LINMO	120	IC	100	99.2	
[Pip _{1,201}][BOB]						[15]
1M LiPF ₆ in						
EC/DMC/DEC (1:1:1		120	10	100	08.1	
v/v/v) + 0.3M	LINMO	120	IC	100	90.1	
[Pip _{1,201}][DFOB]						
0.3M Li[TFSI] in						
[EC/DMC (1:1 wt/wt) +	I PNMC	153	1C ^{c)}	1200	- 80	[16]
$[Pyr_{1,3}][TFSI] + FEC$	LICIVIC	133		1200	~80	
(45:45:10)]						
1M LiPF ₆ in EC:DMC	I NMO	110	0.50	200	~ 90	[17]
(1:1 v/v)		110	0.50	200	~70	

+ 30 or 50 wt%						
[Pyr _{1,4}]PF ₆						
Li[FSI]/[Pyr _{1,4}][FSI]/BT	LFP	150	1C	400	94.6	[18]
FE (3:4:4 in mol)	NMC532	~135	1C ^{c)}	150	93.9	
0.1M Li[DFOB] in	LFP	~150	0.5C	500	86	
[Pyr _{1,201}][TFSI]/TTE	LCO	~145	0.2C	180	96	[19]
(1:2 v/v)	NMC622	~200	0.2C	100	96	-
Li[FSI]/[EMI][FSI]/BTF	NMC811	185	1C ^{c)}	200	96	[20]
E (1:2:2 in mol)	NWC011	105		200	50	
Li[FSI]						
/[EMI][FSI]/dFBn (1:2:2	NMC811	192	1C ^{c)}	500	93	[21]
in mol)						
Li[FSI]/[Pip ₁₃][FSI]/TTE	LFP	~110	50	1000	87	[22]
(1:2:4 in mol)		110	50	1000	07	
Li[TFSI]						
/[Pyr _{1,3}][FSI]/TTE	LCO	~155	0.5C	400	80	[23]
(1:2:2 in mol)						
0.8[Pyr _{H4}]TFSI-						
0.2Li[TFSI] + 10 wt%	LFP	170	0.05C ^{e)}	50	~75	
VC						[24]
0.8[Pyr _{H4}]FSI-0.2Li[FSI]	NMC622	155	$0.1C^{f}$	60	95	
+ 10 wt% VC	11110022	100	0.10	00	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	

a) EC: ethylene carbonate, DEC: diethyl carbonate, DOL: 1,3-dioxolane, DME: dimethoxyethane, DMC: dimethyl carbonate, FEC: fluoroethylene carbonate, VC: vinylene carbonate, BTFE: bis(2,2,2-trifluoroethyl)ether, TTE: 1,1,2,2-tetrafluoroethyl 2,2,3,3-tetrafluoropropyl ether, dFBn: 1,2-difluorobenzene, ^{b)} LCO: LiCoO₂, NMC811: LiNi_{0.8}Mn_{0.1}Co_{0.1}O₂, LRNM: Li_{1.2}Ni_{0.2}Mn_{0.6}O₂, LTO: Li₄Ti₅O₁₂, NM88: LiNi_{0.88}Mn_{0.03}C_{0.09}O₂, NMC111: LiNi_{0.33}Mn_{0.33}Co_{0.33}O₂, LFP: LiFePO₄, NMC622: LiNi_{0.6}Mn_{0.2}Co_{0.2}O₂, LNMO: LiNi_{0.5}Mn_{1.5}O₂, LRNMC: Li_{1.2}Mn_{0.56}Ni_{0.16}Co_{0.08}O₂, ^{c)} the battery was first activated by cycling at a lower C-rate, ^{d)} the battery was charged/discharged first at 0.1C, 0.2C, 0.5C, 1C, 2C. ^{e)} the battery was charged/discharged first at 0.05C, 0.1C. ^{f)} the battery was charged/discharged first at 0.05C, 0.1C, 0.2C, 0.5C, 1C.

Supplementary Table 2. Summary of PIL compositions and their performances as the electrolyte for LMBs (σ : conductivity, Q: specific capacity in mAh/g).

Cation			Composition	σ	Cell performances			
Position	Type a)	Additive (IL, salt, etc)	in weight ^{b)}	(mS/cm) ^{c)}	Cathode ^{d)}	Q c)	C-rate	Ref.
Linear								1
Side	Py+N	[C ₂ mim][TFSI]/Li[TFSI]	PIL:IL:salt = 100:45:10	0.126	LFP	145	0.1C	[25]
Side	Py+N	[C _{2O2} mmim][TFSI]/ Li[TFSI]	PIL:IL:salt = 100:100:30	0.046	LFP	120	0.1C	[26]
Side	Im	[C _{2O2} mmim][TFSI]/ Li[TFSI]	PIL:IL:salt = 100:65:20	0.0189	LFP	~160	1C (60 °C)	[27]
Backbone	Pyr	[Pyr _{1,4}][TFSI]/ Li[TFSI] (9:1)	ILE uptake = 587%	~2	LFP	150 162 145	0.5C 1C (55 °C) 5C (120 °	[28]
Backbone	Pyr	1M Li[FSI] in [Pyr _{1,3}][FSI]	PIL:additive = 4:6 ^{e)}	0.8	NMC811 LNMO	162 132	0.1 mA cm ⁻² 0.1 mA cm ⁻²	[29]
Backbone	Pyr	[Pyr ₁₄][TFSI]/ Li[TFSI]	PIL:IL:salt = 28:12:60	0.16	LFP	140	0.2C (40°C)	[30]
Backbone	Pyr	1 M Li[TFSI] in [C ₂ mim][TFSI]	PIL:additive = 2:8	3.4	LFP	169 127	0.1C 1C	[31]

Backbone	Pyr	[Li(G4)][TFSI]	PIL:additive = 33:67	~0.3	LFP	150	0.1C	[32]
Backbone Py	Pyr	[Pyr ₁₃][FSI]/Li[FSI]	PIL:IL:salt = 1:1:1 ^{f)}	0.22 (50 °C)	NMC622	~170	0.1C (40 °C) ^{g)}	[33]
						~160	0.1C ^{g)}	
Copolymer or Polymer blend								
Side chain	Im	Li[TFSI]	co-PIL:salt = 10:3 ^{e)}	0.246	LFP	142	0.2C	[34]
Side chain	Im	[C ₂ mim][TFSI] /Li[TFSI]	co-PIL:IL:salt = 20:5:8	0.19	LFP	135	0.1C	[35]
Backbone	Pyr	[Pyr _{1,201}][TFSI] /Li[TFSI] (9:1) ^{f)}	PIL:PTFEMA: additive = x:2:8 ^{h)}	0.82	LFP	138	1C	[36]
Side chain	Im	Li[TFSI]	co- PIL:PEO:salt = 22.5:67.5:10	0.011	LFP	163	0.2C (60 °C)	[37]
Cross-link	ed PIL	or its copolymer or polymer	blend				1	1
Side chain	Im	Li[TFSI]	xl- PIL:PMIA:salt = 75:x:25 ⁱ⁾	0.197	LFP	134	0.5C	[38]
Side chain	Im	Li[TFSI]	xl- PIL:Li[TFSI] = 33:12	0.14	LFP	140	0.2C	[39]
Side chain	Im	Li[TFSI]	$Li/O = 1:10^{f}$	0.0318	LFP	154 138	0.1C 0.5C	[40]
Side chain	Im	[C2mim][TFSI] /Li[TFSI]	xl-PIL:PVdF- HFP:IL:salt = 2:0.0011:1.3:1	1.06	LFP	154	0.1C	[41]
Side	Im	[C ₂ mim][TFSI]	xl-PIL:IL:salt	0.055	LFP	153	0.1C	[42]

chain		/Li[TFSI]	= 10:2:2				(60 °C)	
Bridge Im	Im [C ₂ mim][TFSI]	xl-PIL:IL:salt	1.03	LFP	166 94	0.1C ^{j)}	[43]	
		/Li[TFSI]	= 3:1.2:0.5		NMC622	188	0.1C ^{j)}	
	[0	[C ₂ mim][TFSI]	xl-PIL:PVdF-		LFP	150	0.5C ^{j)}	
Bridge Im	/Li[TFSI]	HFP:IL:salt = $1 \cdot 1 \cdot 5 \cdot 1 \cdot 2$	1.8		116	4C ^{j)}	[]	
			1.1.J.1.2		NCM622	189	0.1C ^{j)}	
Bridge, side	Im	[C _{2O2} mmim][TFSI] /Li[TFSI]	xl-PIL:IL:salt = 6:21:4.2	1.41	LFP	148	0.2C	[45]
Bridge	Im	Li[TFSI]	crPIL:salt:SN	1.07	LFP	153	0.2C	[46]
211080		/succinonitrile	4:4:5 ^{k)}			133	1C	
Bridge	Im	I (TESI)	xl- PII (ITESI)	0.27	I ED	146	0.5C	[47]
Diluge			3:0.5	0.27		113	2.5C	

^{a)} Py+N: dication of pyridinium and ammonium, Im: imidazolium, Pyr: pyrrolidinium,
^{b)} values are calculated according to the information in the literatures and may be rounded, ^{c)} values at ambient temperature (25±5 °C) or at room temperature unless specific values are reported, ^{d)} LFP: LiFePO4, NMC811: LiNi_{0.8}Mn_{0.1}Co_{0.1}O₂, LNMO: LiMn_{1.5}Ni_{0.5}O₄, NMC622: LiNi_{0.6}Mn_{0.2}Co_{0.2}O₂, ^{e)} integrated with glass fiber separator,
^{f)} molar ratio, PVdF-HFP: poly(vinylidene fluoride-co-hexafluoropropylene), ^{g)} the battery was first activated by cycling at a lower C-rate, ^{h)} PTFEMA: cross-linked poly(2,2,2-trifluoroethyl methacrylate), ratio between PIL: PTFEMA is not specified, ⁱ⁾ PMIA: poly-m-phenylene isophthalamide, ratio between xl-PIL and PMIA is not specified, ^{j)} temperature was not specified, ^{k)} SN: succinonitrile.

Supplementary Table 3. Summary of the use of DESs in the electrolyte for LMBs (Q: capacity).

			0	No of	Capacity		
Electrolyte ^{a)}	Cathode ^{b)}	C-Rate	$(\mathbf{m} \mathbf{A} \mathbf{h} / \mathbf{g})$		retention	Ref.	
			(mAn/g)	cycles	(%)		
LiPF ₆ :TFA (1:4 in							
mol) + 10 wt% EC +	LFP	0.1C	~150	70	~67	[48]	
5 wt% FEC							
Li[TFSI]:Li[DFOB]:		0.5C	~170	200	94		
SN (0.8:0.2:10 in	LCO	1C	~165	200	70	[49]	
mol)		2C	~155	500	72		
Li[TFSI]:Li[DFOB]:							
SN (0.17:0.03:0.8 in	LCO	1C	~180	500	70	[50]	
mol)							
1M LiPF ₆ in							
EC/EMC/DMC							
(1:1:1 v/v/v) + 1	LFP	1C	149	1000	92.1	[51]	
wt% Li[TFSI]:Urea							
(1:3 in mol)							
LiClO4:MSM:H2O	LTO	20C	~130	1000	85.2	[52]	
(1:1.8:1 in mol)	LMO	4.5C	~45	1000	91		
Li[TFSI]:NMA (1:4	NMC811	0.5C	~175	600	74		
in mol) + 2 wt%	NMC622	0.50	~160	600	84	[53]	
LiNO ₃		0.50	~100	000	04		
85 vol%							
Li[TFSI]:NMA (1:4							
in mol) + 15 vol%	LFP	0.5C	110	250	95	[54]	
DMPA/EGDMA/Ac							
Mo (1:2:18 in mol)							
Li[TFSI]:NMA (1:4							
in mol) + 10 wt%							
FEC + 3 wt%	IMO	0.1C	117	200	86.1	[55]	
UPyMA + 1.5 wt%		0.10	11/	200	00.1		
PETEA + 0.1 wt%							
AIBN							

70 wt% Li[TFSI]:NMA (1:4	LFP	0.1C	164	100	81.4	[56]
in mol) in PVDF-	211	0.10	101	100		
HFP						
Li[TFSI]:PDOL (1:3	IFP	0.20	132	200	90	[57]
in mol)		0.20	152	200	50	
Li[TFSI]:NMA (1:4						
in mol) + LiFSI +		0.20	150	250	02.2	[58]
PEO + 10 wt%	LFP	0.2C	159	350	93.3	[- •]
UiO66-NH ₂ ^{c)}						
Li[TFSI]:NMA:AIB						
N:SSH:PETEA	IED	0.1C	156	100	96 1	[59]
(10:40:0.01:3:3 in		0.1C	150	100	00.1	
mol)						
Li[TFSI]:Li[DFOB]:						
SN:Cyanoethyl						
cellulose	LCO	1C	165	200	85	[60]
(0.8:0.02:1:0.364						
wt/wt/wt/wt)						
Li[TFSI]:NML (1:6						
in mol) +						
UpyMA/PEGDA	LCO	0.5C	189	1000	80	[61]
(1:100 wt/wt) + 0.2						
wt% AIBN d)						

^{a)} TFA: 2,2,2-trifluoroacetamide, EC: Ethylene carbonate, FEC: Fluoroethylene carbonate, SN: succinonitrile, EMC: Ethyl methyl carbonate, DMC: Dimethyl carbonate, MSM: methylsulfonylmethane, NMA: *N*-methylacetamide, DMPA: dimethoxy-2-phenylacetophenone, EGDMA: ethylene glycol dimethacrylate, AcMo: 4acryloylmorpholine, UpyMA: 2-(3-(6-methyl-4-oxo-1,4-dihydropyrimidin-2-yl)ureido) ethyl methacrylate, PETEA: pentaerythritol tetraacrylate, PDOL: poly (1,3-dioxolane) , AIBN: 2, 2-azodiisobutyronitrile, NML: *N*-methylurea, PEGDA: polyethylene glycol diacrylate. ^{b)} LFP: LiFePO4, LCO: LiCoO2, LTO: Li4Ti₅O₁₂, LMO: LiMn₂O4, NMC811: LiNi_{0.8}Mn_{0.1}Co_{0.1}O₂, NMC622: LiNi_{0.6}Mn_{0.2}Co_{0.2}O₂. ^{c)} The molar ratio EO:Li⁺ was kept at 18:1.^{d)} The molar ratio EO:Li⁺ was kept at 20:1.

REFERENCES

 Sun H, Zhu G, Zhu Y, et al. High-Safety and High-Energy-Density Lithium Metal Batteries in a Novel Ionic-Liquid Electrolyte *Advanced Materials* 2020;32:20017241
 [DOI: 10.1002/adma.202001741]

2. Wu F, Kim G, Diemant T, et al. Reducing Capacity and Voltage Decay of Co-Free Li_{1.2}Ni_{0.2}Mn_{0.6}O₂ as Positive Electrode Material for Lithium Batteries Employing an Ionic Liquid-Based Electrolyte *Adv Energy Mater* 2020;10:2001830 [DOI:

10.1002/aenm.202001830]

3. Wu F, Fang S, Kuenzel M, et al. Dual-Anion Ionic Liquid Electrolyte Enables Stable Ni-Rich Cathodes in Lithium-Metal Batteries *Joule* 2021;5:2177–2194 [DOI: 10.1016/j.joule.2021.06.014]

4. Wu F, Schür AR, Kim GT, et al. A Novel Phosphonium Ionic Liquid Electrolyte Enabling High-Voltage and High-Energy Positive Electrode Materials in Lithium-Metal Batteries *Energy Storage Mater* 2021;42:826–835 [DOI: 10.1016/j.ensm.2021.08.030]

 Gao X, Wu F, Mariani A, Passerini S. Concentrated Ionic-Liquid-Based Electrolytes for High-Voltage Lithium Batteries with Improved Performance at Room Temperature *ChemSusChem* 2019;12:4185–4193 [DOI: 10.1002/cssc.201901739]

 Heist A, Hafner S, Lee S-H. High-energy Nickel-rich Layered Cathode Stabilized by Ionic Liquid Electrolyte *J Electrochem Soc* 2019;166:A873-A879 [DOI: 10.1149/2.0071906jes]

7. Heist A, Lee S-H Improved Stability and Rate Capability of Ionic Liquid Electrolyte with High Concentration of LiFSI *J Electrochem Soc* 2019;166:A1860– A1866 [DOI: 10.1149/2.0381910jes]

 Brutti S, Simonetti E, De Francesco M, et al. Ionic Liquid Electrolytes for High-Voltage Lithium-Ion Batteries *J Power Sources* 2020;479:228791 [DOI: 10.1016/j.jpowsour.2020.228791]

 Chandra Rath P, Wu CJ, Patra J, et al. Hybrid Electrolyte Enables Safe and Practical 5V LiNi_{0.5}Mn_{1.5}O₄ Batteries *J Mater Chem A Mater* 2019;7:16516–16525
 [DOI: 10.1039/c9ta04147h]

10. Yue K, Zhai C, Gu S, He Y, Yeo J, Zhou G. Performance-Enhanced Lithium Metal Batteries through Ionic Liquid Based Electrolytes and Mechanism Research Derived by Density Functional Theory Calculations *Electrochim Acta* 2021;368:137535 [DOI:

10.1016/j.electacta.2020.137535]

11. Zhang S, Li J, Jiang N, et al. Rational Design of an Ionic Liquid-Based Electrolyte with High Ionic Conductivity Towards Safe Lithium/Lithium-Ion Batteries *Chem Asian* J 2019;14:2810–2814 [DOI: 10.1002/asia.201900581]

12. Wang TH, Chen C, Li NW, et al. Cations and Anions Regulation through Hybrid Ionic Liquid Electrolytes towards Stable Lithium Metal Anode *Chemical Engineering Journal* 2022;439:135780 [DOI: 10.1016/j.cej.2022.135780]

 Jang J, Shin JS, Ko S, et al. Self-Assembled Protective Layer by Symmetric Ionic Liquid for Long-Cycling Lithium–Metal Batteries *Adv Energy Mater* 2022;12:2103955
 [DOI: 10.1002/aenm.202103955]

 Pal U, Rakov D, Lu B, et al. Interphase Control for High Performance Lithium Metal Batteries Using Ether Aided Ionic Liquid Electrolyte *Energy Environ Sci* 2022;15:1907–1919 [DOI: 10.1039/d1ee02929k]

Tsurumaki A, Branchi M, Rigano A, Poiana R, Panero S, Navarra MA.
 Bis(Oxalato)Borate and Difluoro(Oxalato)Borate-Based Ionic Liquids as Electrolyte
 Additives to Improve the Capacity Retention in High Voltage Lithium Batteries
 Electrochim Acta 2019;315:17–23 [DOI: 10.1016/j.electacta.2019.04.190]

16. Nair JR, Colò F, Kazzazi A, et al. Room Temperature Ionic Liquid (RTIL)-Based Electrolyte Cocktails for Safe High Working Potential Li-Based Polymer Batteries *J Power Sources* 2019;412:398–407 [DOI: 10.1016/j.jpowsour.2018.11.061]

17. Tsurumaki A, Agostini M, Poiana R, et al. Enhanced Safety and Galvanostatic Performance of High Voltage Lithium Batteries by Using Ionic Liquids *Electrochim Acta* 2019;316:1–7 [DOI: 10.1016/j.electacta.2019.05.086]

 Liu X, Zarrabeitia M, Mariani A, et al. Enhanced Li⁺ Transport in Ionic Liquid-Based Electrolytes Aided by Fluorinated Ethers for Highly Efficient Lithium Metal Batteries with Improved Rate Capability *Small Methods* 2021;5:2100168 [DOI: 10.1002/smtd.202100168]

 Wang Z, Zhang H, Xu J, et al. Advanced Ultralow-Concentration Electrolyte for Wide-Temperature and High-Voltage Li-Metal Batteries *Adv Funct Mater* 2022;32:2112598 [DOI: 10.1002/adfm.202112598]

20. Liu X, Mariani A, Zarrabeitia M, et al. Effect of Organic Cations in Locally Concentrated Ionic Liquid Electrolytes on the Electrochemical Performance of Lithium Metal Batteries *Energy Storage Mater* 2022;44:370–378 [DOI:

10.1016/j.ensm.2021.10.034]

21. Liu X, Mariani A, Diemant T, et al. Difluorobenzene-Based Locally Concentrated Ionic Liquid Electrolyte Enabling Stable Cycling of Lithium Metal Batteries with Nickel-Rich Cathode *Adv Energy Mater* 2022;12:2200862 [DOI:

10.1002/aenm.202200862]

22. Wang Z, Zhang F, Sun Y, et al. Intrinsically Nonflammable Ionic Liquid-Based Localized Highly Concentrated Electrolytes Enable High-Performance Li-Metal Batteries *Adv Energy Mater* 2021;11:2003752 [DOI: 10.1002/aenm.202003752]
23. Lee S, Park K, Koo B, et al. Safe Stable Cycling of Lithium Metal Batteries with

Low-Viscosity Fire-Retardant Locally Concentrated Ionic Liquid Electrolytes *Adv Funct Mater* 2020;30:2003132 [DOI: 10.1002/adfm.202003132]

24. Lingua G, Falco M, Stettner T, Gerbaldi C, Balducci A. Enabling safe and stable Li metal batteries with protic ionic liquid electrolytes and high voltage cathodes *J Power Sources* 2021;481,228979 [DOI: 10.1016/j.jpowsour.2020.228979]

25. Tian X, Yang P, Yi Y, et al. Self-Healing and High Stretchable Polymer Electrolytes Based on Ionic Bonds with High Conductivity for Lithium Batteries *J Power Sources* 2020;450:227629 [DOI: 10.1016/j.jpowsour.2019.227629]

26. Yin K, Zhang Z, Li X, Yang L, Tachibana K, Hirano S. Polymer Electrolytes Based on Dicationic Polymeric Ionic Liquids: Application in Lithium Metal Batteries *J Mater Chem A Mater* 2015;3:170–178 [DOI: 10.1039/C4TA05106H]

27. Yin K, Zhang Z, Yang L, Hirano S-I. An Imidazolium-Based Polymerized Ionic Liquid via Novel Synthetic Strategy as Polymer Electrolytes for Lithium Ion Batteries *J Power Sources* 2014;258:150–154 [DOI: 10.1016/j.jpowsour.2014.02.057]

28. Yu L, Yu L, Peng Y, Lan X, Hu X. Electrospun Poly(Ionic Liquid) Nanofiber Separators with High Lithium-Ion Transference Number for Safe Ionic-Liquid-Based Lithium Batteries in Wide Temperature Range *Materials Today Physics* 2022;25:100716 [DOI: 10.1016/j.mtphys.2022.100716]

 Fu C, Homann G, Grissa R, et al. A Polymerized-Ionic-Liquid-Based Polymer Electrolyte with High Oxidative Stability for 4 and 5 V Class Solid-State Lithium Metal Batteries *Adv Energy Mater* 2022;12:2200412 [DOI: 10.1002/aenm.202200412]
 Appetecchi GB, Kim G-T, Montanino M, et al. Ternary Polymer Electrolytes Containing Pyrrolidinium-Based Polymeric Ionic Liquids for Lithium Batteries *J Power Sources* 2010;195:3668–3675 [DOI: 10.1016/j.jpowsour.2009.11.146]
 Safa M, Chamaani A, Chawla N, El-Zahab B. Polymeric Ionic Liquid Gel Electrolyte for Room Temperature Lithium Battery Applications *Electrochim Acta* 2016;213:587–593 [DOI: 10.1016/j.electacta.2016.07.118]

32. Alzate-Carvajal N, Rousselot S, Storelli A, et al. Comparative Study on the

Influence of the Polymeric Host for the Operation of All-Solid-State Batteries at

Different Temperatures J Power Sources 2022;535:231382 [DOI:

10.1016/j.jpowsour.2022.231382]

33. Martinez-Ibañez M, Boaretto N, Santiago A, et al. Highly-concentrated bis(fluorosulfonyl)imide-based ternary gel polymer electrolytes for high-voltage lithium metal batteries *J Power Sources* 2023;557,232554 [DOI:

10.1016/j.jpowsour.2022.232554]

34. Fu D, Sun Y, Zhang F, et al. Enabling Polymeric Ionic Liquid Electrolytes with High Ambient Ionic Conductivity by Polymer Chain Regulation *Chemical Engineering Journal* 2022;431:133278 [DOI: 10.1016/j.cej.2021.133278]

 Guo C, Cao Y, Li J, et al. Solvent-Free Green Synthesis of Nonflammable and Self-Healing Polymer Film Electrolytes for Lithium Metal Batteries *Appl Energy* 2022;323:119571 [DOI: 10.1016/j.apenergy.2022.119571]

36. Yu L, Yu L, Liu Q, Meng T, Wang S, Hu X. Monolithic Task-Specific Ionogel Electrolyte Membrane Enables High-Performance Solid-State Lithium-Metal Batteries in Wide Temperature Range *Adv Funct Mater* 2022;32:2110653 [DOI:

10.1002/adfm.202110653]

37. Zhu X, Fang Z, Deng Q, et al. Poly(Ionic Liquid)@PEGMA Block Polymer
Initiated Microphase Separation Architecture in Poly(Ethylene Oxide)-Based SolidState Polymer Electrolyte for Flexible and Self-Healing Lithium Batteries ACS Sustain
Chem Eng 2022;10:4173–4185 [DOI: 10.1021/acssuschemeng.1c08306]

38. Wang D, Jin B, Ren Y, et al. Bifunctional Solid-State Copolymer Electrolyte with Stabilized Interphase for High-Performance Lithium Metal Battery in a Wide Temperature Range *ChemSusChem* 2022;15:e202200993 [DOI:

10.1002/cssc.202200993]

39. Zhang F, Sun Y, Wang Z, et al. Highly Conductive Polymeric Ionic Liquid Electrolytes for Ambient-Temperature Solid-State Lithium Batteries *ACS Appl Mater* Interfaces 2020;12:23774–23780 [DOI: 10.1021/acsami.9b22945]

40. Dong L, Zeng X, Fu J, et al. Cross-Linked Ionic Copolymer Solid Electrolytes with Loose Coordination-Assisted Lithium Transport for Lithium *Batteries Chemical*

Engineering Journal 2021;423:130209 [DOI: 10.1016/j.cej.2021.130209]

41. Sha Y, Yu T, Dong T, Wu X, Tao H, Zhang H. In Situ Network Electrolyte Based on a Functional Polymerized Ionic Liquid with High Conductivity toward Lithium Metal Batteries *ACS Appl Energy Mater* 2021;4:14755–14765 [DOI:

10.1021/acsaem.1c03443]

42. Li R, Fang Z, Wang C, et al. Six-Armed and Dicationic Polymeric Ionic Liquid for Highly Stretchable Nonflammable and Notch-Insensitive Intrinsic Self-Healing Solid-State Polymer Electrolyte for Flexible and Safe Lithium Batteries *Chemical Engineering Journal* 2022;430:132706 [DOI: 10.1016/j.cej.2021.132706]

43. Liang L, Yuan W, Chen X, Liao H. Flexible Nonflammable Highly Conductive and High-Safety Double Cross-Linked Poly(Ionic Liquid) as Quasi-Solid Electrolyte for High Performance Lithium-Ion Batteries *Chemical Engineering Journal* 2021;421:130000 [DOI: 10.1016/j.cej.2021.130000]

44. Liang L, Chen X, Yuan W, Chen H, Liao H, Zhang Y. Highly Conductive Flexible and Nonflammable Double-Network Poly(Ionic Liquid)-Based Ionogel Electrolyte for Flexible Lithium-Ion Batteries *ACS Appl Mater Interfaces* 2021;13(21):25410-25420 [DOI: 10.1021/acsami.1c06077]

45. Guo P, Su A, Wei Y, et al. Healable Highly Conductive Flexible and Nonflammable Supramolecular Ionogel Electrolytes for Lithium-Ion Batteries *ACS Appl Mater Interfaces* 2019;11:19413–19420 [DOI: 10.1021/acsami.9b02182]

46. Tseng Y-C, Hsiang S-H, Lee T-Y, Teng H, Jan J-S, Kyu T. In Situ Polymerized Electrolytes with Fully Cross-Linked Networks Boosting High Ionic Conductivity and Capacity Retention for Lithium Ion Batteries *ACS Appl Energy Mater* 2021;4:14309– 14322 [DOI: 10.1021/acsaem.1c03011]

47. Shi Y, Yang N, Niu J, Yang S, Wang F. A Highly Durable Rubber-Derived Lithium-Conducting Elastomer for Lithium Metal Batteries *Advanced Science* 2022;9:2200553 [DOI: 10.1002/advs.202200553]

48. Mezzomo L, Pianta N, Ostroman I, et al. Deep Eutectic Solvent Electrolytes Based on Trifluoroacetamide and LiPF₆ for Li-Metal Batteries *J Power Sources* 2023;561:232746 [DOI: 10.1016/j.jpowsour.2023.232746]

49. Wu W, Li Q, Cao M, et al. Non-Flammable Dual-Salt Deep Eutectic Electrolyte for High-Voltage Lithium Metal Battery *Crystals* 2022;12(9):1290 [DOI:

10.3390/cryst12091290]

50. Hu Z, Xian F, Guo Z, et al. Nonflammable Nitrile Deep Eutectic Electrolyte

Enables High-Voltage Lithium Metal Batteries *Chemistry of Materials* 2020;32:3405–3413 [DOI: 10.1021/acs.chemmater.9b05003]

51. Li W, Liu W, Huang B, et al. Suppressing Growth of Lithium Dendrites by Introducing Deep Eutectic Solvents for Stable Lithium Metal Batteries *J Mater Chem A Mater* 2022;10:15449–15459 [DOI: 10.1039/d2ta03253h]

52. Jiang P, Chen L, Shao H, et al. Methylsulfonylmethane-Based Deep Eutectic Solvent as a New Type of Green Electrolyte for a High-Energy-Density Aqueous Lithium-Ion Battery *ACS Energy Lett* 2019;4:1419–1426 [DOI:

10.1021/acsenergylett.9b00968]

53. Liang Y, Wu W, Li D, et al. Highly Stable Lithium Metal Batteries by Regulating the Lithium Nitrate Chemistry with a Modified Eutectic Electrolyte *Adv Energy Mater* 2022;12:2202493 [DOI: 10.1002/aenm.202202493]

54. Joos B, Volders J, Da Cruz RR, et al. Polymeric Backbone Eutectogels as a New Generation of Hybrid Solid-State Electrolytes *Chemistry of Materials* 2020;32:3783–3793 [DOI: 10.1021/acs.chemmater.9b05090]

55. Jaumaux P, Liu Q, Zhou D, et al. Deep-Eutectic-Solvent-Based Self-Healing Polymer Electrolyte for Safe and Long-Life Lithium-Metal Batteries *Angew Chem Int Ed* 2020;59:9134–9142 [DOI: 10.1002/anie.202001793]

56. Li Z, Zhang S, Jiang Z, Cai D, Gu C, Tu J. Deep Eutectic Solvent-Immobilized PVDF-HFP Eutectogel as Solid Electrolyte for Safe Lithium Metal Battery *Mater Chem Phys* 2021;267:124701 [DOI: 10.1016/j.matchemphys.2021.124701]

57. Wang Y, Xu R, Xiao B, et al. A Poly(1,3-Dioxolane) Based Deep-Eutectic Polymer Electrolyte for High Performance Ambient Polymer Lithium Battery *Materials Today Physics* 2022;22:100620 [DOI: 10.1016/j.mtphys.2022.100620]

58. Wang S, Chen Y, Fang Q, et al. Facilitating Uniform Lithium Deposition via Nanoconfinement of Free Amide Molecules in Solid Electrolyte Complexion for Lithium Metal Batteries *Energy Storage Mater* 2023;54:596–604 [DOI: 10.1016/j.ensm.2022.11.002]

59. Li Q, Zhang Z, Li Y, et al. Rapid Self-Healing Gel Electrolyte Based on Deep Eutectic Solvents for Solid-State Lithium Batteries *ACS Appl Mater Interfaces* 2022;14(44):49700-49708 [DOI: 10.1021/acsami.2c12445]

60. Zhang H, Zhou L, Du X, et al. Cyanoethyl Cellulose-Based Eutectogel Electrolyte Enabling High-Voltage-Tolerant and Ion-Conductive Solid-State Lithium Metal Batteries *Carbon Energy* 2022;4:1093–1106 [DOI: 10.1002/cey2.227]
61. Wang H, Song J, Zhang K, et al. A Strongly Complexed Solid Polymer Electrolyte
Enables a Stable Solid State High-Voltage Lithium Metal Battery *Energy Environ Sci* 2022;15:5149–5158 [DOI: 10.1039/d2ee02904a]