Supplementary Material

Ultra-long $\mathrm{Zn}_{3} \mathrm{~V}_{2} \mathrm{O}_{7}(\mathrm{OH})_{2} \cdot \mathbf{2 \mathrm { H } _ { 2 } \mathrm { O }}$ nanowires grown on carbon cloth as cathode material for aqueous zinc-ion batteries

Yu Cui ${ }^{1, \#}$, Yi Ding ${ }^{2, \#}$, Lingfan Guo 2, Chunli Guo ${ }^{2, *}$, Yanzhen Liu ${ }^{3, *}$, Yulin Bai 4, Gang Li ${ }^{1}$, Kaiying Wang ${ }^{1}$

${ }^{1}$ Institute of Energy Innovation, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China.
${ }^{2}$ College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China.
${ }^{3}$ State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Science, Taiyuan 030001, Shanxi, China.
${ }^{4}$ College of Aeronautics and Astronautics, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China.
\#Authors contributed equally.

Correspondence to: Prof. Chunli Guo, College of Materials Science and Engineering, Taiyuan University of Technology, No. 79 West Street Yingze, Taiyuan 030024, Shanxi, China. E-mail: guochunli@tyut.edu.cn; Dr. Yanzhen Liu, State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Science, 27 South Taoyuan Road, Taiyuan 030001, Shanxi, China. E-mail: liuyz@sxicc.ac.cn

Supplementary Figure 1. Schematic diagram of the fabrication process of ZVNW-CC electrode material

Supplementary Figure 2. XRD pattern of ZVNW nanowires grown on carbon cloth.

Supplementary Figure 3. The SEM images of ZVNW.

The Zn^{2+} solid-state diffusion coefficient was obtained through the Galvanostatic Intermittent Titration Technique (GITT) measurement based on the following equation:

$$
\begin{equation*}
\mathrm{D}_{Z n^{2+}}^{G I T T}=\frac{4}{\pi \tau}\left(\frac{n_{m} V_{m}}{S}\right)^{2}\left(\frac{\Delta E_{s}}{\Delta E_{t}}\right)^{2} \tag{1}
\end{equation*}
$$

Where τ is the constant current pulse time (s); n_{m} and V_{m} are the moles (mol) and molar volume $\left(\mathrm{cm}^{3} \mathrm{~mol}^{-1}\right)$ of active material, respectively; S is the electrode/electrolyte contact area $\left(\mathrm{cm}^{2}\right) ; \Delta \mathrm{E}_{\mathrm{s}}$ is the change in the steady-state voltage during a single step GITT experiment; $\Delta \mathrm{E}_{\mathrm{t}}$ is the change in a total cell voltage after the application of a constant current pulse during a single step GITT experiment. In our GITT measurement, a cell was charged or discharged at the current density of $50 \mathrm{mAh} \mathrm{g}^{-1}$ for 20 min , followed by a 2 h open circuit step to allow relaxation back to equilibrium.

Supplementary Figure 4. Schematic illustration of a single step of the GITT

Supplementary Figure 5. Nyquist plots of ZVNW-CC and ZVNW electrodes after cycling in the frequency range of 0.01 Hz to 100 kHz .

There are two stages of weight changes: one is the slight weight loss of adsorbed water before $100^{\circ} \mathrm{C}$, and the other is the weight loss of structural water molecules from 400 to $500^{\circ} \mathrm{C}{ }^{[\mathrm{S} 1]}$. When charged from 0.5 to 1.6 V , the structural water molecules content of ZVNW-CC materials decreases gradually (as shown in Figure 7 c), and their weight loss of structural water molecules is reduced from 10.72% to 7.58%, and then discharged from 1.0 to 0.2 V , the structural water molecules content of ZVNW-CC materials starts to increase gradually, and their weight loss of structural water molecules is also increased. It was consistent with the XPS results.

Supplementary Figure 6. Thermogravimetric curves of ZVNW-CC electrodes under different charging and discharging conditions.

REFERENCES

[1] Y.H. Du, X.Y. Liu, X.Y. Wang, J.C. Sun, Q.Q. Lu, J.Z. Wang. Freestanding strontium vanadate/carbon nanotube films for long-life aqueous zinc-ion batteries. Rare Metals 2021; 41; 415-424. [DOI: 10.1007/s12598-021-01777-2]

