Supplementary Materials

N, O co-doped hierarchically porous carbon derived from pitch/g-C₃N₄ composite for high-performance zinc-ion hybrid supercapacitors

Miaomiao Zhang[#], Ende Cao[#], Ruilun Xie^{*}, Guangming Rong, Tianyu Chen, Xiangchun Liu, Zhao Lei, Qiang Ling, Zhigang Zhao, Yujiao Tian^{*}

School of Chemistry & Chemical Engineering, Anhui Province Key Laboratory of Coal Clean Conversion & High Valued Utilization, Anhui University of Technology, Ma'anshan 243032, Anhui, China.

[#]Authors contributed equally.

Correspondence to: Dr. Ruilun Xie, Dr. Yujiao Tian, School of Chemistry & Chemical Engineering, Anhui Province Key Laboratory of Coal Clean Conversion & High Valued Utilization, Anhui University of Technology, Ma'anshan 243002, Anhui, China. E-mail: Ruilunxie@126.com; tyjiao@163.com

Proximate analysis (wt%)				Ultimate analysis (<i>wt%</i> daf)				
$M_{ m ad}$	Ad	$V_{\rm daf}$	${FC_{daf}}^{\ast}$	С	Н	Ν	S	O^*
0.08	1.00	55.80	43.12	91.34	4.01	1.03	0.43	3.19

Supplementary Table 1. Proximate and ultimate analyses of coal tar pitch

*: by difference.

Supplementary Table 2. N₂ adsorption-desorption isotherm parameters of M-C₃N₄-x samples

Sample	$S_{BET}(m^2 \cdot g^{-1})$	St-Plot/micro (m ² ·g ⁻¹)	S _{BJH/meso} (m ² ·g ⁻¹)	V _{total} (cm ³ ·g ⁻¹)	V _{micro} (cm ³ ·g ⁻ ¹)
M-C ₃ N ₄ -0.5	666.28	120.82	379.89	0.41	0.06
M-C ₃ N ₄ -1	943.01	82.18	553.88	0.56	0.04
M-C ₃ N ₄ -2	1001.58	194.54	516.70	0.58	0.11

Supplementary Table 3. Content of C, N and O in M-C₃N₄-x samples

Atomic (at%)	C 1s	N 1s	O 1s
M-C ₃ N ₄ -0.5	87.37	3.72	8.91
M-C ₃ N ₄ -1	88.17	5.11	6.72
$M-C_{3}N_{4}-2$	87.14	6.32	6.54

Supplementary Figure 1. (A) CV curves of M-C₃N₄-0.5//Zn ZIHSC and (B) M-C₃N₄-1//Zn ZIHSC at $2\sim100 \text{ mV}\cdot\text{s}^{-1}$; (C) CV curves of M-C₃N₄-0.5//Zn ZIHSC and (D) M-C₃N₄-1//Zn ZIHSC at $100\sim1,000 \text{ mV}\cdot\text{s}^{-1}$.

Supplementary Figure 2. GCD curves of (A) M-C₃N₄-1//Zn and (B) M-C₃N₄-0.5//Zn ZIHSCs.

Supplementary Figure 3. GCD cycling stabilities of (A) M-C₃N₄-1//Zn and (B) M-C₃N₄-0.5//Zn ZIHSCs at 1 A·g⁻¹.

Supplementary Figure 4. (A) CV curves of M-C₃N₄-0.5//Zn ZIHSC at 2~100 mV·s⁻¹; (B) *b* values of M-C₃N₄-0.5//Zn ZIHSC (the embedded graph is a linear fit curve); (C) CV curves of M-C₃N₄-1//Zn ZIHSC at 2~100 mV·s⁻¹; (D) *b* values of M-C₃N₄-1//Zn ZIHSC (the embedded graph is a linear fit curve).

Supplementary Figure 5. Schematic representation of the capacitive contribution of M-C₃N₄-2//Zn ZIHSC at scanning rate of (A) 6 mV·s⁻¹; (B) 10 mV·s⁻¹; (C) 20 mV·s⁻¹; (D) 60 mV·s⁻¹; and (E) 100 mV·s⁻¹.

Supplementary Figure 6. Schematic representation of the capacitive contribution of M- $C_3N_{4}-1//Zn$ ZIHSC at scanning rate of (A) $2mV \cdot s^{-1}$; (B) 6 mV $\cdot s^{-1}$; (C) 10 mV $\cdot s^{-1}$; (D) 20 mV $\cdot s^{-1}$; (E) 60 mV $\cdot s^{-1}$; and (F) 100 mV $\cdot s^{-1}$; (G) Capacitance contribution of M- $C_3N_{4}-1//Zn$ ZIHSC at 2~100 mV $\cdot s^{-1}$.

Supplementary Figure 7. Schematic representation of the capacitive contribution of M-C₃N₄-0.5//Zn ZIHSC at scanning rate of (A) $2mV \cdot s^{-1}$; (B) 6 $mV \cdot s^{-1}$; (C) 10 $mV \cdot s^{-1}$; (D) 20 $mV \cdot s^{-1}$; (E) 60 $mV \cdot s^{-1}$; and (F) 100 $mV \cdot s^{-1}$; (G) Capacitance contribution of M-C₃N₄-0.5//Zn ZIHSC at 2~100 $mV \cdot s^{-1}$.