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Abstract
As one of the critical components of rotating machinery, fault diagnosis of rolling bearings has great significance. 
Although deep learning is useful in diagnosing rolling bearing faults, it is difficult to diagnose the faults of bearings 
under multiple operating conditions. To overcome the above-mentioned problem, this paper designs a modular 
federated learning network for fault diagnosis in multiple working conditions by using dynamic routing technology 
as the federation strategy for federated learning of the multiple modular neural network. First, according to 
different working conditions, the collected multi-working condition data are divided into different groups for 
feeding of modular network to extract the local features under different working conditions. Then, an additional 
deep neural network is constructed to extract the feature involved in data without working condition division. 
Finally, the global adaptive feature extraction of each working condition can be obtained by designing a federated 
strategy based on dynamic routing technology to achieve the weights allocation scheme of the modular neural 
network. The bearing dataset of Case Western Reserve University is taken as a benchmark dataset to verify the 
effectiveness of the proposed method.
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1. INTRODUCTION
As an indispensable core component in the connection and transmission chain of mechanical equipment, 
rolling bearings play an important role in aerospace, electric power, metallurgy, and other industrial 
fields[1]. Mechanical equipment working in a complex environment is prone to a higher fault rate related to 
rolling bearings. Thus, the fault diagnosis of rolling bearings is significant. During the working process of 
mechanical equipment, the change of load is inevitable, and the change of load will cause the change of the 
motor speed, which can be seen in the collected data containing vibration data of different loads. Therefore, 
the fault diagnosis under multiple working conditions is of much practical significance.

In recent years, various methods for fault diagnosis of rolling bearings have been emerged. Data-driven 
fault diagnosis methods do not require precise physical models and expert knowledge, and they can directly 
extract data features for fault diagnosis. Therefore, data-driven fault diagnosis methods have attracted much 
attention from experts in the field of fault diagnosis[2-3].

Deep learning is a data-driven fault diagnosis method. According to the variance of network structure, it 
can be classified into four categories: convolutional neural network (CNN)-based methods, long short-term 
memory network (LSTM)-based methods, deep neural network (DNN)-based methods, and DBN-based 
methods[4-7]. DNN and its variations have become some of the most commonly used methods for bearing 
fault diagnosis due to their simple structure and advantages in processing sequence data. Kong et al.[8] 
designed a feature fusion layer to fuse different types of features extracted by DNNs with different 
activation functions. Liu et al.[9] performed a short-time Fourier transform on the sound signal of the 
rolling bearing to generate a spectrogram, and DNN was used to extract features involved in spectrogram. 
This improved the fault diagnosis capability of the model. Shao et al.[10] used DAE to extract low-level 
features from raw vibration signals polluted with Gaussian noise, and then used SDAE to extract high-level 
features from low-level features to improve fault diagnosis performance. Although the above-mentioned 
deep learning fault diagnosis method can achieve satisfactory fault diagnosis results, it does not take the 
situation of multiple working conditions into account.

Due to changes in the external environment, load variation, etc., bearings usually operate under different 
working conditions in the sense that their process characteristics are quite different; the statistical 
distribution of the data collected from each working condition are also significantly distinguishable, which 
violates the constraint of independent and identical distribution required by traditional deep learning 
algorithms. At present, statistical methods, variational mode decomposition, and decision tree methods 
are often used to accomplish fault diagnosis under multiple working conditions[11-13]. Sun et al.[11] first 
used PCA to reduce the dimensionality of the data, and then constructed a decision tree to implement a 
multi-sensor-based multi-condition fault diagnosis method. Song et al.[12] used a recursive local outlier 
factor algorithm for adaptive pattern recognition to obtain the principal components according to the 
cumulative data contribution rate, and the analyzed the critical components that were obtained. The above-
mentioned method requires the design of a feature extractor, requires professional knowledge to perform 
data processing on the collected data signal, and the real-time performance of fault diagnosis cannot be 
guaranteed.

Existing fault diagnosis methods based on deep learning cannot effectively extract features from multi-
working condition data. Therefore, some researchers first classify the working conditions, and then 
perform fault diagnosis under the situation of multiple working conditions. Zhou et al.[14] established the 
DNN model separately for each working condition’s data, which can realize the fault diagnosis of multiple 
working conditions. Chen et al.[15] proposed a hierarchical fault diagnosis method based on CNN. The 
first layer performs working condition recognition and the second layer performs fault type diagnosis. The 
above-mentioned fault diagnosis methods have high requirements for the accuracy of working condition 
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division, and the result of fault diagnosis is dependent on the efficiency of the working condition division. 
On the other hand, some scholars use data preprocessing techniques to eliminate modal differences 
between data and then perform fault diagnosis. Gu et al.[16] used local nearest-neighbor standardization to 
eliminate the differences between multimodal data and obtain accurate fault diagnosis results. Che et al.[17] 
used horizontal and vertical analysis methods to obtain the amplitude, variance, and standard deviation 
of the bearing signal. Then, PCA was used to extract the potential features. They designed the decision-
level fusion of CNN and DBN to achieve multi-working condition bearing fault diagnosis. Some researchers 
also use transfer learning methods to solve fault diagnosis in multiple working conditions. Qiao et al.[18] proposed 
an adaptive convolutional neural network, which used a small amount of labeled bearing data to train a 
deep learning model, and then the sample size was increased according to the sequential tracking method 
to improve the generalization ability of the model. Zhao et al.[19] proposed a transfer learning framework 
based on deep multi-scale convolutional neural networks. The model trained in the source domain can be 
used for multi-working condition fault diagnosis of equipment after fine-tuning. Han et al.[20] proposed a 
deep transfer learning based on a joint domain adaptation algorithm. When the training set and the test 
set belong to different working conditions, they can be mapped to the same feature subspace to process the 
training set such that fault diagnosis for variable working conditions can be well accomplished. However, 
transfer learning requires a large number of labeled training datasets to train the network.

In engineering practice, due to the constraints of the environment and equipment complexity, the working 
conditions of the bearing are not easy to recognize. Therefore, it is necessary to combine the existing 
single-condition data and multi-working condition data into a unified model to obtain more robust and 
accurate fault diagnosis results. Federated learning is a distributed machine learning technology to train 
a unified network model by using data features provided by different organizers in cooperation. Through 
modularized federation of data under different working conditions, the purpose to jointly optimize 
local machine learning models can be achieved. Robert et al.[21] designed a special modular neural 
network structure using the idea of modularity, using gate networks for task allocation, and then using 
corresponding sub-networks to solve other related problems. This modular deep learning method is better 
than a traditional neural network with improved generalization ability. Andreas et al.[22] combined different 
neural network modules into a deep neural network to solve the problem of answering vision. Wei et al.[23] 
designed a deep one-dimensional convolutional neural network based on the idea of modularization, which 
can perform fault diagnosis under multiple working conditions in a noisy environment. Zhao et al.[24] 
used fuzzy c-means clustering to divide the measurement space into multiple subspaces and obtain the 
characteristics of each subspace through a local network. This method has good generalization ability. Bo et al.[25] 
realized modularization through fuzzy decision. This subnet method based on fuzzy decision can effectively 
improve the accuracy of the model. Yan et al.[26] designed a hierarchical CNN network, with spectral 
clustering for hierarchical categorizing. Geng et al.[27] first used wavelet analysis to process the original 
data, and then extreme learning machine was used as a classifier to identify rolling bearing faults. However, 
rules such as maximum pooling used in the previous work discard some features and cannot make full use 
of the extracted features. Therefore, Sabour et al.[28] designed a capsule network model based on dynamic 
routing rules. The capsule network is a feature-based modular approach. A group of neurons forms an 
output capsule. Each capsule expresses different characteristics, and the position relationship of different 
characteristics is established in the routing algorithm, which makes the network more robust to the angle 
change of the target. Chen et al.[29] proposed a capsule network with a normalization criterion that obeys 
the Gaussian distribution to diagnose bearing faults. This network could overcome the defects of CNN 
pooling layer’s since it uses all features extracted by the convolution layer. Li et al.[30] proposed an end-to-
end scheme to combine two-channel signals by using a capsule network. The effect of rotation speed can be 
eliminated by fusing vertical and horizontal vibration signals, so the invariant features can be automatically 
extracted by using capsule network. Zhu et al.[31] proposed a new capsule network with a starting block and 
regression branch, which first converted a one-dimensional signal into a time-frequency graph, and then 
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two convolution layers were used to extract more abstract features from the time-frequency graph. The 
initial block was applied to the output feature map to improve the capsule’s nonlinearity. Two branches with 
different functions were designed: one branch uses the longest capsule to determine the damage size of the 
capsule, and the other branch reconstructs the time-frequency graph to overcome the over-fitting problem. 
However, the above-mentioned network suffered a large computational burden.

To overcome the above shortcomings, this paper designs a deep learning fault diagnosis network based on 
modular federation for bearings under multi-working conditions. DNN is firstly used to extract features 
layer by layer, and then the dynamic routing algorithm is adopted to adaptively federate the features 
extracted by multiple DNNs to establish a new modular federated neural network. The main contributions 
of this paper are as follows:

(1) This paper designs a new modular federated neural network based on the idea of federated learning.
(2) Dynamic routing technology is used to propose a new modular federation mechanism such that the 
features extracted from data of different working conditions can be effectively federated in the case when 
there are no additional working condition labels.
(3) Modular federated learning increases the feature expression capabilities of the network to realize online 
fault diagnosis of bearing operated in any working condition.

The remainder of this paper is organized as follows: the related works of the proposed method are 
introduced in Section 2. The proposed modular federated learning method (MFLM) for fault diagnosis 
in the situation of multiple conditions is elaborated in Section 3. The experimental verification is 
demonstrated in Section 4. Finally, we draw the conclusions in Section 5.

2. RELATED WORKS
2.1 DNN stacked with multiple Auto-Encoders
In this paper, the architecture of DNN is stacked with multiple AEs together. Rumelhart et al.[32] proposed 
the training process of DNN, as shown in Figure 1. First, the greedy layered training method is used to 
perform unsupervised pre-training layer by layer, and then supervised reverse fine-tuning is designed to 
optimize the entire network. The output of the previous AE is fed into the input of the AE on the next layer, 
thus the pretraining of DNN can be accomplished layer by layer.

After layer-by-layer feature extraction, the Softmax classifier is added and applied. The network parameters 
can be fine-tuned with labeled data by using back propagation.

2.2 Batch normalization
Batch normalization (BN) is a neural network optimization method proposed by Batch Normalization: 
Accelerating Deep Network Training by Reducing Internal Covariate Ioffe and Szegedy[33], among others. 
For data with different covariances, BN can renormalize the output parameters to a standard Gaussian 
distribution[34], as shown in Equations (1)-(3):

                                                                                                                                                                              (1)

                                                                                                                                                                              (2)

                                                                                                                                                                              (3)
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Where zl(i) represents the ith input of the lth BN layer. ω  and σ indicate the scale and offset of the layer, 
which are updated with training. E[zl(i)] and Var[zl(i)], respectively, represent the mean and standard 
deviation of the input x. zl(i) is the output of mini-batches in the BN layer. ω is a small constant, preventing 
the denominator from being zero.

2.3 Squashing function
For a vector neuron, squash can be defined for the nonlinear activation function to compress the vector 
neuron’s value to within 0-1.

                                                                                                                                                                              (4)

where sj and vj are the input and output of squashing, respectively. The long vector obtained can be 
compressed into a short vector through the squashing function, and a short vector can be reduced to 
almost zero length. The squashing function does not change the vector’s direction so that the feature can be 
transferred to the next level network well.

2.4 Federated learning
As shown in Figure 2, federated learning is essentially a distributed machine learning technology to train 
a unified network model by using data features provided by different organizers cooperatively. This paper 
uses the idea of federated learning to optimize federation of modular deep learning networks established 
under multiple working conditions and realizes federation between features through vertical federation.

Figure 1. The structure diagram of deep neural network.
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3. MULTI-WORKING CONDITION FAULT DIAGNOSIS BASED ON MFLM
Due to variation of operating load, rolling bearings may operate in multiple working conditions. Figure 3 
shows the normal probability plot of inner race fault data collected in a single working condition and 
multiple working conditions (Figure 3A and B, respectively). The x-axis of Figure 3 represents the data 
sorted in ascending order, while the y-axis represents the probability of a normal distribution. In the 
normal probability graph, if all sample points are near the solid line, the corresponding data obey normal 
distribution. Comparing Figure 3A and B, it can be seen that the data collected in multi-working condition 
violates the independent and identical distribution (i.i.d) assumption of machine learning algorithms, 
which is the basis of DNN for accurate feature extraction.

On the other hand, the existing modular neural network can only synthesize the sub-modules’ diagnosis 
results rather than integrate modules.

3.1 Constructed multi-working condition fault diagnosis network
To solve the above-mentioned problems, this section proposes a MFLM for multi-working condition fault 
diagnosis by designing a federation mechanism using dynamic routing technology. The overall framework 
of the MFLM-based method proposed in this paper is shown in Figure 4. The detailed steps of the proposed 
fault diagnosis for multiple working conditions are as follows:

Step 1. Data preprocessing
For the 1D vibration data collected by an accelerator sensor, the sliding time window technique is used for 

Figure 2. Vertical federated learning network.
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reshaping the original data in Equation (5), where l is the length of the time window, and the step length is 
step = 10.

                                                                                                                                                                              (5)

n represents that the dataset XTrain contains n samples, each row in Equation (5) represents a sample, and 
the vector length of each sample is equal to the length of the sliding window.

Figure 3. Comparison of normal probability graphs between single working condition data and multiple working condition data. (A) The 
normal probability graph of single working condition data. (B) The normal probability graph of multiple working condition data.

Figure 4. Network structure diagram for modular federated learning method.
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Step 2. Construct a neural network for feature pre-extraction of each modular
Data collected from each working condition is fed into the input of a modular network. An additional 
modular network is established for combined data XTrain’ without data labels. The BN technique is adopted 
in DNN training. Taking the two hidden layers as an example, the layer-by-layer feature extraction using 
BN can be formulated as Equation (6)

                                                                                                                                                                              (6)

Where x is the input sequence data, Wi,1 and Wi,2 represent the weight between the input and output of the 
ith DNN, bi,1 and bi,2 are the corresponding biases, and f(·) is the nonlinear activation function Relu.

The features extracted by multiple DNNs are spliced into Featuremul. Featureglobal is the global feature 
extracted by Equations (7) and (8). As shown in Equations (9) and (10), spliced feature Featuremul is back 
propagated to each DNN for optimization, and the updated Featurelocal can represent Featuremul as much as 
possible.

                                                                                                                                                                              (7)

                                                                                                                                                                              (8)

                                                                                                                                                                              (9)

                                                                                                                                                                            (10)

Where fθ ,1(·) represents the coding function of the first AE in SAE, fθ ,2(·) represents the coding function of 
the second AE, θ represents the coding parameter, and σ represents the non-linear activation function.

Step 3. Batch normalize data of different scales
Batch normalization is performed using Equations (11) and (12):

                                                                                                                                                                            (11)

                                                                                                                                                                            (12)

where E(·) and Var(·) are the mean and standard deviation of the input Features. γ and β can be trained, and 
ε is a minimal number to ensure that the denominator is not 0.

Step 4. Federation of features at different scales
According to the local features of the single working condition extracted in Step 2 and the global feature 
of the multi-condition extracted by the global feature extraction network, a federation mechanism for the 
features at different scales is proposed. First, the local feature of the working condition label is federated 
to Featuremul. Then, after the multi-layer feature optimization, the federated learning is performed with 
Featurefed. The two features of different scales are merged to obtain Features, and the normalized features 
after federation are divided into modules. Each module is a vector neuron, and the information involved is 
better than that of the traditional scalar neuron. The squashing function is added after each module to scale 
the length of the vector neuron obtained to within 0-1. The modules of the fusion feature are divided into 
adaptive federation through dynamic routing strategy to realize the adaptive allocation of the weights of the 
top-level modules.
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The propagation of the capsules between two layers involves two stages: linear transformation and dynamic 
routing. Different from fully connected neural networks, each capsule is multiplied by an independent 
weight matrix to predict each high-level capsule, as shown in Equation (13).

                                                                                                                                                                            (13)

where ui denotes the ith input capsule, Wij is the weight matrix, and 
^

|j iu  denotes the prediction vectors.

Next, each prediction 
^

|j iu  propagates the features to all high-level capsules sj by the dynamic routing 
technique, while the high-level capsule is the weighted sum over all its predictions, as shown in Equation 
(14).

                                                                                                                                                                            (14)

where cij are coupling coefficients which satisfy the restriction of 1ij
j

c =∑ . The coupling coefficients are 
determined by Equation (15):

                                                                                                                                                                            (15)

where bij are the log prior probabilities that prediction 
^

|j iu  should be coupled to the high-level capsule sj. 
Then, the squashing function shown in Equation (16) is used.

                                                                                                                                                                            (16)

where sj and vj are the input and output of squashing, respectively. Parameter bij is updated, as shown in 
Equation (17).

                                                                                                                                                                            (17)

By iterating Equations (13)-(17) n times, the final feature vj is obtained.

Step 5. Multi-working condition fault diagnosis
The new loss function defined in Equation (18) is designed for training of the network:

                                                                                                                                                                            (18)

where vj represents the length of the federation module as well as the probability distribution of the fault 
diagnosis results, Rc is the target category of the current fault, and m+ = 0.9. m- = 0.1 and μ = 0.6 are used 
to reduce the weight of loss without failure; the initial learning can be stopped by reducing the length of all 
units’ activation vectors.

3.2 Online fault diagnosis
Once online observation data X(t) are collected, they can be fed into the well trained MFLM model. The 
specific steps are as follows:

(1) Use the trained DNN5 to perform global feature extraction on X(t), and fuse the trained Featurelocal to 
obtain Features.
(2) Send the fusion data Features to the trained MFLM to realize fault diagnosis.
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Figure 5 is the algorithm flow chart of the proposed method.

4. EXPERIMENTAL RESULTS AND ANALYSIS
4.1 Bearing data description and experimental description
A benchmark dataset downloaded from Case Western Reserve University bearing center[35] was used to test 
the effectiveness of the proposed method. The experimental platform is shown in Figure 6, including 
a 2 hp motor, power meter, electronic controller, torque sensor, and a load motor. The acceleration sensor 
was used to collect the motor drive end-bearing vibration signal under different load conditions in the 
experiment. The bearing’s health state was divided into four types: inner race fault (IF), outer race fault 

Figure 5. Algorithm block diagram for modular federated learning method.
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(OF), roller fault (RF), and normal condition (N). The size of each bearing fault in this dataset is 0.007, 
0.014, 0.021, or 0.028 inches. The sampling frequency is 12 kHz. The bearing’s working conditions varies 
with the load as 0, 1, 2, or 3 hp.

The multiple working conditions of the bearing are shown in Table 1.

Since the vibration data collected by the sensor are 1D sequence data, a sliding window with size 400 was 
used to preprocess the original sequence data. Each sliding window is a sample, and the sliding step length 
is 20.

To verify the effectiveness of the method in this paper, Experiments 1-9 were designed. The proposed 
method was compared with three existing fault diagnosis methods: the traditional DNN fault diagnosis 
method and the hierarchical DNN (HDNN) designed in[14] and the fault diagnosis method proposed in[24] 
(TICNN) were trained for a single working condition and used the trained network to test bearing faults 
under other working conditions. The network structure parameters are shown in Table 2.

To verify the influence of multi-condition data on the experimental results, Experiments 1-6 were designed, 
among which Experiments 1-3 are single-condition fault diagnosis experiments, while Experiments 4-6 are 
multi-condition fault diagnosis experiments. To verify the influence of the number of training samples on 
the fault diagnosis results, Experiments 7-9 were designed. The experimental design is shown in Table 3.

4.2 Analysis of experimental results
4.2.1 Analysis of the experimental results of single working conditions and multiple working conditions
The experimental results of single working conditions and multiple working conditions are shown in Table 4. 
Experiments 1-3 are the experimental results of a single working condition. Experiment 1 is that the fault 
size is 0.007 inches, Experiment 2 is that the fault size is 0.014 inches, and Experiment 3 is that the fault size 
is 0.021 inches. Experiments 4-6 are the experimental results of multiple working conditions. Experiments 
4-6 show that the fault size is 0.007, 0.014, and 0.021 inches, respectively.

Working condition Load Rotating speed (rpm)
Working condition 1 0 1797
Working condition 2 1 1772
Working condition 3 2 1750
Working condition 4 3 1730

Table 1. Working conditions of rolling bearings

Figure 6. Bearing data collection equipment[35]: (A) bearing data collection experiment platform diagram; and (B) location diagram of 
the acceleration sensor.
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Comparing Rows 2 and 5 in Table 4, it can be seen that, when the size of the fault is the same, the multi-
condition fault diagnosis accuracy of different networks is reduced compared to the single-condition fault 
accuracy. Similarly, comparing Rows 3 and 6, the same pattern can be found as in Rows 4 and 7. This shows 
that the data of multiple operating conditions caused the problem of feature extraction, which affected the 
diagnosis results. Therefore, it is of great practical significance to carry out fault diagnosis research under 
multiple working conditions. Comparing the Columns 2 and 5 of Row 4, it can be seen that the MFLM 
method proposed in this paper has fault diagnosis accuracy 7.39% higher than that of the traditional DNN 
method when the fault size is 0.021 inches. In the fault diagnosis of industrial field, it is more difficult to 
improve the accuracy to more than 95%. MFLM not only improves the accuracy to more than 95%, but also 
reaches 99.75%, so it is more likely to be valued by engineers.

To improve the readability of the experiment results listed in Table 4, Figure 7 shows the fault diagnosis 
classification chart taking Experiment 6 as an example. The classification results are represented by blue 

Network model Number of 
network layers Learning rate Activation function Classifier Optimization criteria

DNN 5 0.001 Relu Softmax Error back propagation algorithm
HDNN 6 0.001 Relu Softmax Error back propagation algorithm
TICNN 8 0.001 Relu Softmax Error back propagation algorithm
MFLM 6 0.001 Squash/Relu Marginloss + 

Softmax
Dynamic routing strategy + error back 
propagation algorithm

Table 2. Network structure and parameters

DNN: Deep neural network; HDNN: hierarchical deep neural network; TICNN: convolution neural networks with training interference; 
MFLM: modular federated learning method.

Experiment
Load 
state 
(hp)

Number of samples in 
each working condition 

module

Number of 
samples in the 
total module

Number of 
samples in the 

test set

Fault size 
(inch) Fault type

Experiment 1 0 - 8000 1600 0.007 Normal, inner race, outer race, roller
Experiment 2 0 - 8000 1600 0.014 Normal, inner race, outer race, roller
Experiment 3 0 - 8000 1600 0.021 Normal, inner race, outer race, roller
Experiment 4 0/1/2/3 8000/8000/8000/8000 24000 1600 0.007 Normal, inner race, outer race, roller
Experiment 5 0/1/2/3 8000/8000/8000/8000 24000 1600 0.014 Normal, inner race, outer race, roller
Experiment 6 0/1/2/3 8000/8000/8000/8000 24000 1600 0.021 Normal, inner race, outer race, roller
Experiment 7 0/1/2/3 8000/8000/8000/8000 16000 1600 0.007 Normal, inner race, outer race, roller
Experiment 8 0/1/2/3 8000/8000/8000/8000 32000 1600 0.007 Normal, inner race, outer race, roller
Experiment 9 0/1/2/3 8000/8000/8000/8000 48000 1600 0.007 Normal, inner race, outer race, roller
Experiment 10 0/1/2/3 8000/8000/8000/8000 16000 1600 0.014 Normal, inner race, outer race, roller
Experiment 11 0/1/2/3 8000/8000/8000/8000 32000 1600 0.014 Normal, inner race, outer race, roller
Experiment 12 0/1/2/3 8000/8000/8000/8000 48000 1600 0.014 Normal, inner race, outer race, roller
Experiment 13 0/1/2/3 8000/8000/8000/8000 16000 1600 0.021 Normal, inner race, outer race, roller
Experiment 14 0/1/2/3 8000/8000/8000/8000 32000 1600 0.021 Normal, inner race, outer race, roller
Experiment 15 0/1/2/3 8000/8000/8000/8000 48000 1600 0.021 Normal, inner race, outer race, roller

Table 3. Experimental design table

Experiment DNN HDNN TICNN MFLM
Experiment 1 90.57% 92.48% 94.86% 97.89%
Experiment 2 91.07% 92.86% 95.46% 98.23%
Experiment 3 92.36% 93.73% 96.28% 99.75%
Experiment 4 75.96% 85.17% 90.94% 93.13%
Experiment 5 83.39% 87.52% 91.36% 96.32%
Experiment 6 85.64% 89.72% 93.75% 97.56%

Table 4. Comparison of experimental results between single working conditions and multiple working conditions

DNN: Deep neural network; HDNN: hierarchical deep neural network; TICNN: convolution neural networks with training interference; 
MFLM: modular federated learning method.
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stars in the figure. The red circles represent the true fault categories of the sample. The coincidence of red 
circle and blue star indicates that the classification is correct. Figure 7A-D corresponds to Row 7 in Table 4. 
Figure 7A is the result of traditional DNN fault diagnosis. Figure 7B is the result of HDNN fault diagnosis. 
Figure 7C is the result of TICNN fault diagnosis. Figure 7D is the result of MFLM fault diagnosis.

Figure 7A shows that the blue stars are dense, which indicates that the misclassification rate is relatively 
high. Figure 7B has fewer blue stars than Figure 7A, indicating that HDNN’s classification effect is better 
than the traditional DNN. This is because HDNN adopts a hierarchical fault diagnosis method, which first 
diagnoses the working condition category, and then diagnoses the fault category. Figure 7D shows that 
MFLM has the fewest blue stars, which means that the misclassification rate is the lowest. This explains the 
superiority of the modular neural network in fault diagnosis of multiple working conditions.

4.2.2 Analysis of fault diagnosis results of multiple working conditions with different sample sizes
The number of training samples is an important factor affecting the effectiveness of fault diagnosis. It is 
difficult to obtain high-quality labeled fault samples in industrial sites. Therefore, to verify the results of 
different sample sizes for multi-condition fault diagnosis, the number of samples for each type of fault in 
Experiment 7-9 is 1000, 2000, and 3000, respectively, while the size of the fault is 0.007, 0.014, and 0.021 
inches, respectively. The experimental results are shown in Table 5.

Comparing Columns 2 and of Row 4 of Table 5, it can be seen that, when the fault size is 0.007 inches and 
the number of samples without working condition labels is 48,000, the multi-working condition diagnosis 

Figure 7. Fault diagnosis classification diagram. The fault diagnosis result of multiple working conditions with a fault size of 0.021 
inches. (A) Shows the fault diagnosis classification diagram of deep neural network; (B) shows the fault diagnosis classification diagram 
of hierarchical deep neural network; (C) shows the fault diagnosis classification diagram of convolution neural networks with training 
interference; and (D) shows the fault diagnosis classification diagram of modular federated learning method.
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accuracy of MFLM can reach 95.03%. The diagnostic accuracy of the traditional DNN method is lower than 
80%. Comparing Columns 4 and 5 of Row 4, it can be seen that, although the existing TICNN method can 
achieve more than 90% accuracy in multi-condition diagnosis, it is still lower than the MFLM method. This 
illustrates the effectiveness of modular federation in MFLM. Comparing Rows 4 and 10, it can be seen that, 
when the fault size is 0.021 inches and the number of samples without working conditions is 16,000 and 
48,000, the greater is the number of samples, the higher is the accuracy of fault diagnosis. In fault diagnosis, 
the number of samples is an important factor that affects the result of fault diagnosis. Comparing Columns 
4 and 5 of Row 8, it can be seen that, when the fault size is 0.021 inches and the number of samples without 
working conditions is 16,000, the diagnostic accuracy of MFLM is 97.11%, which is 2.79% higher than 
that of TICNN. The accuracy is increased to more than 95%, which is a very important improvement in 
engineering. Row 10 of Table 5 shows that, when the fault size is 0.021 inches and the number of samples 

Experiment DNN HDNN TICNN MFLM
Experiment 7 75.93% 83.14% 89.06% 91.97%
Experiment 8 77.02% 86.01% 91.77% 93.81%
Experiment 9 79.68% 88.64% 93.01% 95.03%
Experiment 10 82.87% 87.05% 91.34% 94.39%
Experiment 11 85.43% 88.92% 93.27% 97.15%
Experiment 12 86.52% 91.17% 95.09% 97.91%
Experiment 13 85.32% 89.19% 94.32% 97.11%
Experiment 14 87.53% 91.14% 95.96% 98.29%
Experiment 15 89.03% 94.29% 97.83% 99.07%

Table 5. Multi-working condition fault diagnosis results with different numbers of training samples

DNN: Deep neural network; HDNN: hierarchical deep neural network; TICNN: convolution neural networks with training interference; 
MFLM: modular federated learning method.

Figure 8. Fault diagnosis classification diagram. The fault size is 0.021 inches, the number of samples without working conditions 
is 48,000, and the fault diagnosis results are shown under multiple working conditions. (A) Shows the fault diagnosis classification 
diagram of deep neural network; (B) shows the fault diagnosis classification diagram of hierarchical deep neural network; (C) shows 
the fault diagnosis classification diagram of convolution neural networks with training interference; and (D) shows the fault diagnosis 
classification diagram of modular federated learning method.
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without working conditions is 48,000, while the diagnostic accuracy of the various fault diagnosis methods 
was improved, the diagnostic accuracy of MFLM could reach 99.07%, which illustrates the superiority of 
the method proposed in this paper.

To improve the readability of the experiment results listed in Table 5, Figure 8 shows the fault diagnosis 
classification chart taking Experiment 15 as an example. Figure 8A-D correspond to Row 10 in Table 5. 
Figure 8A is the result of traditional DNN fault diagnosis. Figure 8B is the result of HDNN fault diagnosis. 
Figure 8C is the result of TICNN fault diagnosis. Figure 8D is the result of MFLM fault diagnosis.

Figure 8A shows that the blue stars are dense, which indicates that the misclassification rate is relatively 
high. Figure 8B has fewer blue stars than Figure 8A, indicating that HDNN’s classification effect is better 
than that of the traditional DNN. This is because HDNN adopts a hierarchical fault diagnosis method, 
which first diagnoses the working condition category, and then diagnoses the fault category. Figure 8D 
shows that MFLM has the fewest blue stars, which means that the misclassification rate is the lowest. This 
explains the superiority of modular neural network in fault diagnosis of multiple working conditions. 
Figure 9 shows a comparative bar graph of all experimental results.

5. CONCLUSIONS
Aiming at improving the low generalization ability of traditional neural networks when solving multi-
working condition problems, this paper designs a modular federated neural network based on dynamic 
routing technology to design a federated mechanism of multiple modular networks. Using the proposed 
method, bearing fault diagnosis under multiple working conditions can be well diagnosed without 
requiring an additional module recognition stage.
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