Supplementary Materials

Improved hardness prediction for reduced-activation high-entropy alloys by incorporating symbolic regression and domain adaptation on small datasets

Hao Pan^{1,2,3}, Mingjie Zheng^{1,2,*}, Xiaochen Li^{1,4,*}, Shijun Zhao^{3,5}

¹Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China.

²University of Science and Technology of China, Hefei 230026, Anhui, China.

³Department of Mechanical Engineering, City University of Hong Kong, Hong Kong 999077, China.

⁴School of Physics and Electronic Engineering, Jining University, Qufu 273155, Shandong, China.

⁵City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, Guangdong, China.

*Correspondence to: Prof. Mingjie Zheng, Hefei Institutes of Physical Science, Chinese Academy of Sciences, 350 Shushanhu Road, Hefei 230031, Anhui, China. E-mail: mingjie.zheng@inest.cas.cn; Dr. Xiaochen Li, School of Physics and Electronic Engineering, Jining University, 1 Xingtan Road, Qufu 273155, Shandong, China, E-mail: xiaochen.li@jnxy.edu.cn

1. Supplementary information on generation of element-based features

Parameters Symbol **Parameters Symbol** $T_{\rm m}$ Atomic number Ζ Melting point 1st ionization Atomic radius R_a I_1 energy Covalent radius $R_{\rm c}$ S_0 Molar entropy Valance electron Molar heat capacity VEC $C_{\rm p}$ concentration at constant pressure Electronegativity Bulk modulus В χp (Pauling) Electronegativity Elastic modulus Ε $\chi_{\rm ar}$ (Allred-Rochow) Work function Fw Shear modulus G Molar fusion $H_{\rm fus}$ Poisson's ratio υ enthalpy Molar vaporization Elastic constant $H_{\rm vap}$ C_{ij} enthalpy Molar sublimation Linear expansion $H_{\rm atm}$ L_{t} enthalpy coefficient Thermal expansion K Cohesive energy $E_{\rm c}$ coefficient

Supplementary Table 1. List of the elemental parameters for the construction of

features

 $\mathbf{M}X = \sum_i C_i X_i$

$$VX = \sum_{i} C_i \left(1 - \frac{X_i}{MX}\right)^2$$
(S2)

$$FX = \max\left(C_i\left(1 - \frac{X_i}{MX}\right)^2\right) - \min\left(C_i\left(1 - \frac{X_i}{MX}\right)^2\right)$$
(S3)

$$DX = \sum_{i} \sum_{j,j \neq i} C_i C_j \left| X_i - X_j \right|$$
(S4)

$$H_{\text{mix}} = 4 \sum_{i=1, i \neq j}^{n} C_i C_j \Delta H_{ij}$$
(S5)

$$S_{\text{mix}} = R \sum_{i=1}^{n} C_i ln(C_i)$$
(S6)

$$w^{6} = \left(\sum_{i=1}^{n} C_{i} F w_{i}\right)^{6} \tag{S7}$$

where variables C_i and X_i represent the element concentration and the property of the

specific element, respectively. *R* is the gas constant, which equals to 8.3145 J/(mol·K). ΔH_{ij} refers to the enthalpy term with two interact constituent elements *i* and *j*, the values of ΔH_{ij} is from the literature [1].

2. Supplementary information on generation of symbolic regression (SR) features

Supplementary Table 2. Hyperparameters in SR

-

Parameter	Meaning	Value
Population	The number of features generated in each	500
size	generation	500
Generations	The maximum number of generations	50
Hall of forma	Number of features stored in the collection	50
Hall of fame	of best features across generations	30
Number of	Number of features selected from feature	10
features	generator	10
Function set	Mathematical operators	See the footnote*
Pc	Crossover probability	(0.6, 0.9), step = 0.1
Da	Culture contation and ability	[(0.93-Pc)/3,
PS	Subtree mutation probability	(1-Pc)/3] step = 0.01
Ph	Hoist mutation probability	Ps
Pp	Point mutation probability	1-Pc-Ps-Ph
Depth	Depth of tree	[2,5]
Parsimony	Penalty factor for the complex features	0.001

*Function sets include #1: $[add(+), sub(-), mul(\times), div(\div), inv(1/x), log(log x),$ $\exp(\exp x), \min(\min(x_1, x_2)), \max(\max(x_1, x_2)), \operatorname{sqrt}(\sqrt{x})], #2: [add(+), sub(-),$ $\operatorname{mul}(\times)$, $\operatorname{div}(\div)$] and #3: $[\operatorname{add}(+), \operatorname{sub}(-), \operatorname{mul}(\times), \operatorname{div}(\div), \operatorname{inv}(1/x), \log(\log x),$ $\exp(\exp x)$, $\operatorname{sqrt}(\sqrt{x})$]

Supplementary Figure 1. Cross-validation and testing loss of ridge regression model using features from the best SR feature generator in each iteration. Black dots marked the selected SR generator using different operator sets in Supplementary Table 2.

3. Supplementary information on construction of machine learning (ML) models.

	Supplementary	Table 3.	The search	range o	f hyper	parameters	for ML	models
--	---------------	----------	------------	---------	---------	------------	--------	--------

Algorithms	Hyperparameters		
	max_depth = [None, 5, 10, 20],min_samples_split = [2, 5, 10],		
DIK	min_samples_leaf = [1, 2, 4, 8], max_leaf_nodes = [None, 10, 20]		
ETR	n_estimators = [50, 100, 200], max_depth = [None, 10, 20], , max_leaf_nodes = [None, 10, 20]		
	min_samples_split = [2, 5, 10], min_samples_leaf = [1, 2, 4, 8]		
GBR	$n_{estimators} = [10, 20, 50, 100, 200, 300, 500], max_{leaf_nodes} = [None, 10, 20], learning_rate = [10^{-4}, 10^{-3}, 10^{-2}, 10^{-1}], n_{estimators} = [10, 20, 50, 100, 200, 300, 500], max_{leaf_nodes} = [None, 10, 20], learning_rate = [10^{-4}, 10^{-3}, 10^{-2}, 10^{-1}], n_{estimators} = [10, 20, 50, 100, 200, 300, 500], max_{leaf_nodes} = [None, 10, 20], learning_rate = [10^{-4}, 10^{-3}, 10^{-2}, 10^{-1}], n_{estimators} = [10, 20, 50, 100, 200, 300, 500], max_{leaf_nodes} = [None, 10, 20], learning_rate = [10^{-4}, 10^{-3}, 10^{-2}, 10^{-1}], n_{estimators} = [10^{-4}, 10^{-3}, 10^{-2}], n_{estimators} = [10^{-4}, 10^{-3}], n_$		
	max_depth = [None, 3, 5, 7, 9, 11], min_samples_split = [2, 5, 10], min_samples_leaf = [1, 2, 4]		
KNR	n_neighbors = [3, 5, 7], weights = ['uniform', 'distance']		
RFR	n_estimators = [10, 20, 50, 100, 200, 300, 500], max_depth = [None, 5, 10, 20], min_samples_split = [2, 5, 10],		
	min_samples_leaf = [1, 2, 4, 8], max_leaf_nodes = [None, 10, 20],		
Ridge	alpha = [10 ⁻⁴ , 10 ⁻³ , 10 ⁻² , 10 ⁻¹ , 1, 10]		
SVR	C = [0.1, 1, 10], gamma = ['scale', 'auto'], kernel = ['linear', 'poly', 'rbf', 'sigmoid'],		
	degree = [2, 3, 4], epsilon = [0.1, 0.2, 0.5]		

Feature subset	ML algorithm	Hyperparameters
NoGPF	ETR	max_depth=None, max_leaf_nodes=None, min_samples_leaf=1,
		min_samples_split=2, n_estimators=100,
GPFOnly	RFR	max_depth=10, max_leaf_nodes=20, min_samples_split=2,
		min_samples_leaf=1, n_estimators=50,
GPFCombined	GBR	max_depth=10, max_leaf_nodes=20, min_samples_leaf=2,
		min_samples_split=10, n_estimators=200,

Supplementary Table 4. Hyperparameters of best ML models of each feature set

REFERENCES

[1] A. Takeuchi, A. Inoue, Mater. Trans. 46 (2005) 2817–2829.