Supplementary Material: Photo-coupled Electrocatalytic Oxygen Reduction to Hydrogen Peroxide by Metal-Free CNTs-threaded Oxidized g-C$_3$N$_4$

EXPERIMENTAL SECTION

Preparation of electrode

The electrode was prepared by electrophoresis. Firstly, 10 mg of catalyst and 20 mg of iodine were dissolved in 25 mL of acetone solution and ultrasonicated for 30 minutes to obtain a uniformly dispersed suspension. Fixed the conductive glass composed of fluorine-containing tin oxide (FTO) on the cathode and anode respectively, put them in the solution and ensure the working area was 2*2 cm2. Electrodeposition was conducted for 3 minutes under the condition of a DC power supply of 10V, and the catalyst was tightly electrodeposited on the cathode FTO due to the positive charge on the catalyst surface. Put the prepared electrode in a muffle furnace and dry at 200 °C for 2 h at 5 °C/min to remove excessive iodine. Finally, the dried electrode was weighed. The mass of this sample except OCN-200/CNTs-12 h was 1.3 mg due to its special electrophoresis conditions (30 V, 3 min), the mass of other samples was controlled at 0.8 mg.

Instruments and Characterization

X-ray diffraction (XRD) patterns were collected in parallel mode (2θ from 10° to 80°) with a commercial instrument (Rigaku Dmax-3C with Cu Kα radiation). X-ray photoelectron spectroscopy (XPS) measurements were analyzed on a Perkin-Elmer PHI 5000C with an Al Kα source. The morphology of the products was studied by field-emission scanning electron microscope (FESEM, HITACHI S-4800) and transmission electron microscopy (TEM, JEOL, 2010F). The UV–vis diffuse
reflectance spectroscopies were collected from 200-800 by an MC-2530 spectrometer (BaSO$_4$ as a reference). Fourier transform infrared (FT-IR) spectra were measured using a Nicolet 6700 spectrometer on samples embedded in KBr pellets. Raman spectra were measured using the SuperlabRamll. The NOVA 4000e automatic physical adsorption instrument (Quantachrome) was used to measure the adsorption and desorption isotherm of N$_2$ at a liquid-nitrogen temperature of 77 K to obtained the BET of the catalyst. Wherein the specific surface of the catalyst was calculated by BET equation. For temperature programmed desorption (TPD) of O$_2$ measurement$^{[1]}$, after 1 h at 300 ℃ helium as a carrier gas pretreatment, in He atmosphere was removed by isothermal physical adsorption of 2 % O$_2$ for 30 minutes. At an O$_2$ gas flow rate of 50 mL min$^{-1}$, the temperature is continuously increased to 500 ℃ at 10 ℃/min.

Photoelectrochemical activity measurements

All photoelectrochemical performance measurements were performed on an electrochemical workstation (CHI660E) with that an SCE electrode as the reference electrode, a Pt wire electrode as the counter electrode, the prepared electrode as the working electrode and 60 mL 0.5 M Na$_2$SO$_4$ solution as the electrolyte. The photocurrent measurement was a cycle of illumination and darkness in 20s or 40s at 60 mL 0.5 M Na$_2$SO$_4$ solution. Similarly, the EIS and LSV measurements were carried out under illumination and darkness and Ar and O$_2$ atmosphere of the electrodes. The photoelectrochemical H$_2$O$_2$ production activity measurements were carried out with a bias of -0.50 V, under the 300 W Xe lamp illumination with a 400 nm cutoff filter. At this process, the solution was continuously purged by oxygen bubbling during the irradiation.

Rotating disk electrode (RDE) measurements

The measurements were performed on a Pine Durham, NC 27705 electrochemical system with a three-electrode cell using an Ag/AgCl electrode and a graphite rod electrode as the reference and counter electrode, respectively$^{[2]}$. 5 mg catalysts were dispersed in 1 mL EtOH containing 25 μL Nafion by ultrasonication to prepare the working electrode suspension. The prepared solution (10 μL) was dropped on a Pt disk
electrode and dried at room temperature. The linear sweep voltammogram (LSV) was obtained in an O₂-saturated 0.05 M Na₂SO₄ (pH = 3) with a scan rate of 10 mV/s after O₂ bubbling for 30 min. The current response of the same voltage range in N₂ was also collected to deduct the background value. The average number of electrons (n) involved in the overall O₂ reduction was determined by the slopes of the Koutecky-Levich plots with the following equation:

\[j^{-1} = j_k^{-1} + B^{-1} \omega^{-1/2} \]

\[B = 0.2 n F \nu^{-1/6} C D^{2/3} = A \times n \]

j is the current density, \(j_k \) is the kinetic current density, \(\omega \) is the rotating speed (rpm), F is the Faraday constant, \(\nu \) is the kinetic viscosity of water, C is the bulk concentration of O₂ in water, and D is the diffusion coefficient of O₂, respectively. The contribution of all parameters (denoted as \(A = 0.032 \) mC S\(^{-1/2}\)) to Equation (2) in solution of 0.05 M Na₂SO₄.

Detection of H₂O₂ concentration

The concentration of hydrogen peroxide was detected by the DPD method\(^{[3-5]}\). In order to avoid exceeding the detection limit of the standard concentration curve of the DPD method, samples with an excessive H₂O₂ concentration was measured by dilution of 5 times. The stock solutions of N,N-diethyl-1,4-phenylene-diamine sulfate (DPD, 97%, Aldrich) and peroxidase (POD, horseradish, Aldrich) were the reagent, the sodium phosphate buffer was used to adjust pH to neutral. The POD, DPD and sodium phosphate buffer were prepared as follow. 0.1 g of DPD was dissolved in 10 mL of 0.1 M H₂SO₄ solution and 5 mg of POD was dissolved in 5 mL of purified water. The POD solution was kept in 3-5 °C for five days. Sodium phosphate buffer solution was made by mixing 99.7 mL of purified water, 87.7 mL of 1 M sodium dihydrogen phosphate anhydrous solution, and 12.6 mL of 1 M sodium phosphate dibasic dihydrate solution. Adding 0.4 mL phosphate buffer, 1.12 mL water, 0.05 mL DPD and 0.05 mL POD into 1mL sample and shaking vigorously for 90 seconds for measurement. The calibration curves of the concentration of H₂O₂ were also obtained relying on the different range
of H$_2$O$_2$ concentration. The absorbance was measured at 551 nm by UV/visible spectrophotometer.

The measurement of electrochemical surface area (ECSA)

The ECSA values were estimated by determining the double-layer capacitance of the system from CV measurement. Firstly, a non-Faradaic region was identified from CV in quiescent solution. And all the measured currents in this region were assumed to be from the double-layer charging. Based on this assumption, the charging current (ic) was equal to the product of electrochemical double layer capacitance, C_{dl} and the scan rate (v), as shown in **Equation (3)**6.

$$I_c = v \times C_{dl} \quad \text{(3)}$$

Linear fit ic with different scanning speeds (v), the slope of the straight line obtained was C_{dl}. So, the ESCA of the photoelectrode can be calculated through dividing C_{dl} by the specific capacitance of the sample as shown in **Equation (4)$^7, 8$**.

$$ESCA = C_{dl} / \varepsilon$$

Here we used a general specific capacitance of 0.015 mF cm$^{-2}$ for the carbon materials.

DFT computational details

All the spin theoretical simulations in our work were carried out on the Vienna ab initio Simulation Package (VASP) with the version 5.4.19. The Generalized gradient approximation (GGA) with the Perdew-Burke-Emzerhof (PBE) functional form was employed to evaluate the electron-electron exchange and correlation interactions while the projector augmented-wave (PAW) methods were implanted to represent the core-electron (valence electron) interactions. Plane-Wave basis function was set with a kinetic cut-off energy of 550 eV. The ground-state atomic geometries were optimized by relaxing the force below 0.02 eV/Å and the convergence criteria for energy was set with the value of 1.0×10^{-5} eV/cell. A Monkhorst-Pack meshes10 with the size of $3 \times 3 \times 1$ were employed to sample bulk Brillouin zone for the electronic properties. Tetrahedron method with Blöchl corrections11 was employed for the electronic structures and total energy of our models while the Gaussian smearing was for
stress/force relaxations. In order to better describe the interactions between molecules, van der Waal (vdw) interactions are included describing by DFT-D3 method of Grimme.

Supplementary Figure 1. SEM image of different sample A: pristine g-C₃N₄, B: OCN, C-D: GCN-NRs, E-F: OCN-NPs.

Supplementary Figure 2. A: XRD patterns and B: Raman spectra of OCN-200/CNTs with different acidification times.
Supplementary Figure 3. A: FTIR spectra of OCN NPs and OCN/CNTs with different weight ratios of OCN-NPs and CNTs and B: FTIR spectra of OCN NPs and OCN/CNTs with different acidification times.

Supplementary Figure 4. XPS spectra of OCN-200/CNTs-y (y = 6, 12, 18 and 24 h).

Supplementary Figure 5. The UV-Visible spectra of OCN-NPs and OCN/CNTs.
Supplementary Figure 6. \(\text{H}_2\text{O}_2 \) production of OCN-200/CNTs-\(y \) (\(y=0, 6, 12, 18 \) and 24) \((\lambda \geq 400 \text{ nm}, - 0.5 \text{ V vs. SCE})\).

Supplementary Figure 7. \(\text{H}_2\text{O}_2 \) production of OCN-NPs, OCNTs and OCN-200/CNTs-18h \((\lambda \geq 400 \text{ nm}, - 0.5 \text{ V vs. SCE})\).

Supplementary Figure 8. \(\text{H}_2\text{O}_2 \) production of mechanical mixing, OCN-Bulk/CNTs and OCN-NPs/CNTs \((\lambda \geq 400 \text{ nm}, - 0.5 \text{ V vs. SCE})\).
Supplementary Figure 9. A: electrocatalysis H$_2$O$_2$ production at different bias; B: the 1 h current diagram of the reaction under different systems.

Supplementary Figure 10. A: the H$_2$O$_2$ production and Faradaic efficiency for the electrodes at -0.5 V vs. SCE; B: The cycle experiment of H$_2$O$_2$ production and FE of the OCN-200/CNTs-18h.

Supplementary Figure 11. A: XRD pattern of the FTO, FTO-OCN/CNTs-fresh and FTO-OCN/CNTs-used; B: SEM of OCN/CNTs-fresh and OCN/CNTs-used.
Supplementary Figure 12. Electrochemical Mott–Schottky curves of OCN-NPs and OCN/CNTs.

Supplementary Figure 13. Gap energies of OCN-NPs and OCN/CNTs.

Supplementary Figure 14. IPCE of OCN-200/CNTs-18h, OCN-200/CNTs-12h and OCN-NPs.
Supplementary Figure 15. Porter curve converted from impedance spectrum of OCN-NPs.

Supplementary Figure 16. Porter curve converted from impedance spectrum of OCN/CNTs.
Supplementary Figure 17. ECSA of different weight ratio of OCN-NPs and CNTs

Supplementary Figure 18. ECSA of different acidification time of OCN/CNTs.
Supplementary Figure 19. N\textsubscript{2} adsorption–desorption isotherms of different samples.

Supplementary Figure 20. H\textsubscript{2}O\textsubscript{2} production under Ar and O\textsubscript{2} atmosphere.

Supplementary Figure 21. The comparison of TPD-O\textsubscript{2} among different weight ratio of OCN-NPs and CNTs.
Supplementary Figure 22. The comparison of TPD-O$_2$ among different acidification time of OCN/CNTs.
Supplementary Table 1. The oxygen content (%) of OCN-200/CNTs-y (y=6, 12, 18 and 24 h).

<table>
<thead>
<tr>
<th>Samples</th>
<th>OCN-200/CNTs-6h</th>
<th>OCN-200/CNTs-12h</th>
<th>OCN-200/CNTs-18h</th>
<th>OCN-200/CNTs-24h</th>
</tr>
</thead>
<tbody>
<tr>
<td>O Content (%)</td>
<td>3.63</td>
<td>4.09</td>
<td>4.41</td>
<td>4.62</td>
</tr>
</tbody>
</table>

Supplementary Table 2. The comparison of H\textsubscript{2}O\textsubscript{2} production for OCN/CNTs with other previously reported catalysts.

<table>
<thead>
<tr>
<th>Samples</th>
<th>System</th>
<th>Potential (V vs. RHE)</th>
<th>Sacrificial agent</th>
<th>H\textsubscript{2}O\textsubscript{2} in acid</th>
<th>H\textsubscript{2}O\textsubscript{2} in alkali</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>AKCN</td>
<td>PC</td>
<td>/</td>
<td>10% EtOH</td>
<td>3.00</td>
<td>2.40</td>
<td>12</td>
</tr>
<tr>
<td>OCN-500</td>
<td>PC</td>
<td>/</td>
<td>10% IPA</td>
<td>0.0053</td>
<td>/</td>
<td>2</td>
</tr>
<tr>
<td>AKMT</td>
<td>PC</td>
<td>/</td>
<td>10 vol% EtOH</td>
<td>3.50</td>
<td>2.20</td>
<td>1</td>
</tr>
<tr>
<td>Co\textsubscript{0}/AQ/C\textsubscript{3}N\textsubscript{4}</td>
<td>PC</td>
<td>/</td>
<td>10% MeOH</td>
<td>0.12</td>
<td>/</td>
<td>13</td>
</tr>
<tr>
<td>PCN-NaCA</td>
<td>PC</td>
<td>3.5 wt% glycerol</td>
<td>18.7</td>
<td>/</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Ni MOF NSs</td>
<td>EC</td>
<td>0.5 V</td>
<td>No</td>
<td>/</td>
<td>80.00</td>
<td>15</td>
</tr>
<tr>
<td>FeCN@C</td>
<td>EC</td>
<td>-0.6 V</td>
<td>No</td>
<td>2.20</td>
<td>1.20 (pH=7)</td>
<td>16</td>
</tr>
<tr>
<td>EPI</td>
<td>PEC</td>
<td>0.26 V</td>
<td>No</td>
<td>2.76</td>
<td>/</td>
<td>17</td>
</tr>
<tr>
<td>pTTh</td>
<td>PEC</td>
<td>0.65 V</td>
<td>No</td>
<td>/</td>
<td>74.07</td>
<td>3</td>
</tr>
<tr>
<td>OCN-NPs/CNTs</td>
<td>PEC</td>
<td>-0.083 V</td>
<td>No</td>
<td>30.7</td>
<td>5.51</td>
<td>This work</td>
</tr>
</tbody>
</table>

PC: Photocatalytic system; EC: Electrocatalytic system; PEC: Photo-coupled electrocatalytic system; The H\textsubscript{2}O\textsubscript{2} concentration unit is mmol/h/g\textsubscript{cat}.
Supplementary Table 3. The electronic life of the Porter curve for OCN-NPs and OCN-200/CNTs-18h.

<table>
<thead>
<tr>
<th>Samples</th>
<th>(f_{\text{max}})</th>
<th>(\tau) (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OCN-NPs</td>
<td>0.316</td>
<td>0.503</td>
</tr>
<tr>
<td>200:1,18 h</td>
<td>0.121</td>
<td>1.313</td>
</tr>
</tbody>
</table>

Supplementary Table 4. The BET surface areas, pore volume and average pore size of all samples.

<table>
<thead>
<tr>
<th>Sample</th>
<th>BET surface area(m²/g)</th>
<th>Pore volume(cm³/g)</th>
<th>Average pore size(nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GCN</td>
<td>6.49</td>
<td>0.06</td>
<td>34.11</td>
</tr>
<tr>
<td>GCN-NRs</td>
<td>25.19</td>
<td>0.09</td>
<td>14.88</td>
</tr>
<tr>
<td>OCN-NPs</td>
<td>68.61</td>
<td>0.15</td>
<td>8.49</td>
</tr>
<tr>
<td>OCN-200/CNTs</td>
<td>28.94</td>
<td>0.28</td>
<td>38.55</td>
</tr>
</tbody>
</table>
6 REFERENCES
8 reduction for photocatalytic production of H2O2 on polymeric carbon nitride.
11 selective oxygen reduction to hydrogen peroxide by oxygen-enriched
14 metal-free polyterthiophene via photoelectrocatalytic dioxygen reduction. Energy
18 2020;142:8641-8648. [DOI: 10.1021/jacs.9b13410]
19 5. Li LJ, Hu ZF,Yu JC, On-demand synthesis of H2O2 by water oxidation for
20 sustainable resource production and organic pollutant degradation. Angew Chem
22 6. Benck JD, Chen ZB, Kuritzky LY, Forman AJ, Jaramillo TF. Amorphous
23 molybdenum sulfide catalysts for electrochemical hydrogen production: insights
25 10.1021/cs300451q]
26 7. McCrory CCL, Jung S, Ferrer IM, Chatman SM, Peters JC, Jaramillo TF.
27 Benchmarking hydrogen evolving reaction and oxygen evolving reaction
29 2015;137:4347-4357. [DOI: 10.1021/ja510442p]
30 8. Song F, Hu XL. Ultrathin cobalt-manganese layered double hydroxide is an
32 10.1021/ja5096733]

