1 Supplementary Materials

RapidAIM 2.0: a high-throughput assay to study functional response of human gut
microbiome to xenobiotics

5

2

6 Leyuan Li[#], Janice Mayne[#], Adrian Beltran, Xu Zhang, Zhibin Ning, Daniel Figeys

7

8 School of Pharmaceutical Sciences, Ottawa Institute of Systems Biology and Department of
9 Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa,

10 Ottawa K1H8M5, Ontario, Canada.

[#]Both authors contributed equally.

12

Correspondence to: Prof. Daniel Figeys, School of Pharmaceutical Sciences, Ottawa Institute of
 Systems Biology and Department of Biochemistry, Microbiology and Immunology, Faculty of
 Medicine, University of Ottawa, 451 Smyth Road, Ottawa K1H 8M5, Ontario, Canada. E-mail:
 dfigeys@uottawa.ca

18 **Table of contents**

- 19 Supplementary Information 1: Reagents and consumables for RapidAIM 2.0 protocol
- 20 Supplementary Method 1: Fresh fecal sample collection before culturing
- 21 Supplementary Method 2: Fecal sample collection and live microbiota biobanking
- 22 Supplementary Method 3: 96-well Plate Based Manual Digestion and Desalting Workflow
- 23 Supplementary Table 1: Preparation of stock solutions for RapidAIM culture media
- 24 Supplementary Table 2: Culture Media Preparation Table
- 25 Supplementary Table 3: Setup of UltiMate 3000 RSLCnano system
- 26 Supplementary Table 4: Setup of Orbitrap Exploris 480 mass spectrometer system
- Supplementary Table 5. Bray-Curtis distance based PERMANOVA results, in-house buffercollected samples
- Supplementary Table 6. Bray-Curtis distance based PERMANOVA results, GutAlive collectedsamples
- 31 Supplementary Figure 1. Automated protein digestion and desalting in 96-well plates
- 32 Supplementary Figure 2. Comparison between manual workflow and the automated workflow
- 33 Supplementary Figure 3. Heatmap showing dataset sparsity on the protein level
- 34 Supplementary Figure 4. Taxonomic origin of proteins

36	Suppl	ementary Information 1
37 38	Reage	nts and consumables for RapidAIM 2.0 protocol
39	Micro	biome culturing
40	•	Potassium phosphate monobasic (Millipore-Sigma - Sigma-Aldrich, cat. no. P5655)
41	•	Potassium phosphate dibasic (Millipore-Sigma - Supelco, cat. no. PX1570-1)
42	•	Sodium chloride (Calbiochem - OmniPur®, cat. no. 7710)
43	•	Magnesium sulfate heptahydrate (Millipore-Sigma - Sigma-Aldrich, cat. no. 230391)
44	•	Calcium chloride, anhydrous (Millipore-Sigma - Sigma-Aldrich, cat. no. C5670)
45 46		• CAUTION: Calcium chloride causes serious eye irritation, wear eye protection/ face protection.
47	•	Tween® 80 (Millipore-Sigma - Sigma-Aldrich, cat. no. P4780)
48	•	Sodium cholate hydrate (Millipore-Sigma - Sigma-Aldrich, cat. no. C9282)
49	•	Sodium chenodeoxycholate (Millipore-Sigma - Sigma-Aldrich, cat. no. C8261)
50	•	Peptone water (Millipore-Sigma - Sigma-Aldrich, cat. no. 70179)
51	•	Bacto TM yeast extract (Becton, Dickinson and Company, cat. no. 212750)
52	•	Sodium bicarbonate (Millipore-Sigma - Supelco, cat. no. SX0320)
53	•	L-cysteine (Millipore-Sigma - Sigma-Aldrich, cat. no. C7352)
54	•	1-Kestose (TCI America, cat. no. K0032)
55	•	Hydrochloric acid (HCl, Fisher Chemical, cat. no. A144S)
56		• CAUTION: HCl causes severe skin burns and eye damage and may cause respiratory
57		irritation. Avoid breathing dust/ fume/ gas/ mist/ vapors/ spray. Use only under a
58		chemical fume hood. Use personal protective equipment.
59	•	Hemin (Millipore-Sigma - Sigma-Aldrich, cat. no. 51280)
60	•	Vitamin K1 ((Millipore-Sigma - Sigma-Aldrich, cat. no. V3501)
61		
62	Metap	proteomic sample processing
63	•	Phosphate buffered saline, 10X solution (Fisher BioReagents, cat. no. BP399-4)
64	•	Urea (Millipore-Sigma - Sigma-Aldrich, cat. no. U5378)
65	•	Tris (hydroxymethyl)aminomethane (Calbiochem - OmniPur®, cat. no. 9230)
66	•	Hydrochloric acid (HCl, Fisher Chemical, cat. no. A144S)

67		• CAUTION: same as above
68	•	Sodium dodecyl sulfate (Millipore-Sigma - Sigma-Aldrich, cat. no. L3771)
69		• CAUTION: Sodium dodecyl sulfate causes skin, eye and respiratory irritation. Use
70		personal protective equipment.
71	•	Acetone (Millipore-Sigma - Sigma-Aldrich, cat. no. 179124)
72		• CAUTION: Acetone is highly flammable liquid and vapor, causes serious eye
73		irritation, and may cause drowsiness or dizziness. Keep away from open flames, hot
74		surfaces and sources of ignition. Use only under a chemical fume hood. Use personal
75		protective equipment.
76	•	Acetic acid, glacial (HAc, Fisher Chemical, cat. no. A38-212)
77		• CAUTION: Flammable liquid and vapor. Use personal protective equipment. Keep
78		away from open flames, hot surfaces and sources of ignition. Use only under a
79		chemical fume hood.
80	•	Acetonitrile (Millipore-Sigma - Sigma-Aldrich, cat. no. 34851)
81		\circ CAUTION: Highly flammable and toxic. Keep away from open flames, hot surfaces
82		and sources of ignition. Use only under a chemical fume hood. Use personal protective
83		equipment.
84	•	Ethyl alcohol, anhydrous (Commercial Alcohols, cat. no. P016EAAN)
85		\circ CAUTION: Ethanol is highly flammable. Keep away from open flames, hot surfaces
86		and sources of ignition.
87	•	Formic acid (Millipore-Sigma - Sigma-Aldrich, cat. no. F0507)
88		\circ CAUTION: Flammable liquid and vapor, causes severe skin burns and eye damage
89		and toxic if inhaled. Keep away from open flames, hot surfaces and sources of ignition.
90		Use only under a chemical fume hood. Use personal protective equipment.
91	•	cOmplete [™] protease inhibitor cocktail (Millipore-Sigma - Roche, cat. no. 04693116001)
92	•	Dithiothreitol (Millipore-Sigma - Sigma-Aldrich, cat. no. 43815)
93	•	Iodoacetamide (Millipore-Sigma - Sigma-Aldrich, cat. no. I1149)
94	•	Trypsin (Worthington Biochemical, cat. no. L5003740)
95	•	DC Protein Assay Reagents A, B and S (Bio-Rad Laboratories, cat. no. 5000113,
96		5000114 and 5000115)
97		• CAUTION: Reagent A causes severe skin burns and eye damage.

98	ТМТ	labeling
99	•	TMT10plex Isobaric Label Reagent Set plus TMT11-131C Label Reagent (Thermo
100		Scientific, cat. no. A34808)
101	•	50% hydroxylamine for TMT experiments (Thermo Scientific, cat. no. 90115)
102		• CAUTION: Causes skin irritation and serious eye damage. Use personal protective
103		equipment.
104	•	1M triethylammonium bicarbonate (TEAB) for TMT experiments (Thermo Scientific, cat.
105		no. 90114)
106	•	Pierce [™] quantitative colorimetric peptide assay (Thermo Scientific, cat. no. 23275)
107		
108	Consu	imables
109	•	Culture plate: Corning® 96 well Polypropylene Deep Well Plate (Sigma-Aldrich, cat. no.
110		CLS3960)
111	•	Culture plate lid: Sealing mat for 2 mL square deep well plates (Sigma-Aldrich, cat. no.
112		AXYAM2MLSQ)
113	•	Lysis plate: 96-well non-skirted PCR plate (Thermo Scientific, cat. no. AB-0600)
114	•	Lysis plate lid: Flat 8 cap strips (Thermo Scientific, cat. no. AB-0783)
115	•	Precipitation plate: Corning® 96 well PP 1.2 mL cluster tubes (Sigma-Aldrich, cat. no.
116		CLS4413)
117	•	Precipitation plate lid: 96-well Polyethylene Cluster Tube 8-Cap Strips (Sigma-Aldrich,
118		cat. no. CLS4418)
119	•	Elution plate: 0.8 mL 96-well storage plate (Thermo Scientific, cat. no. AB-0859)
120	•	Elution plate lid: Nunc [™] 96 Well Caps for 1.0 mL Polystyrene DeepWell [™] Plates
121		(Thermo Scientific, cat. no. 278616)
122	•	TMT plate: Nunc [™] 96-Well Polypropylene Storage Microplates (Thermo Scientific, cat.
123		no. 249944)
124	•	TMT plate lid: 96 well cap natural (Thermo Scientific, cat. no. 276002)
125	•	Reservoir: Axygen TM Single Well High Profile Reagent Reservoir (Axygen, cat. no.
126		RESSW96HP)

127 Supplementary Method 1

128 Fecal Sample Collection

- 129 • CAUTION: Institutional ethical approval must be obtained ensuring all samples are obtained with informed written consent and in accordance with relevant 130 guidelines. 131 • CAUTION: Human feces is a level 2 biohazard (risk group 2) that can contain 132 pathogens such as bacteria, viruses, and parasites. Immunizations for those 133 134 handling these samples may be available against some pathogens such as hepatitis. Personal protective equipment includes googles, gloves and lab coat should be 135 worn when handling feces. Biosafety cabinets and centrifuges with lids to contain 136 aerosols and spills should be used. Samples, equipment, and waste materials need 137 138 to be handled, decontaminated, and disposed of according to institutional biosafety guidelines. 139 • ADDITIONAL CONSIDERATIONS: De-identification of samples should be 140 ensured by the study coordinator. Participants should be provided anonymity 141 142 when provided kits for feces collection and for return of completed kits. Will your study require collection of dietary information and identification of feces 143 144 consistency (e.g., Bristol stool sample identification chart)? 145 **Fecal Sample Collection - On Site** 146
- 147 Materials and Reagents
- 148 Fecal sample collection kit On site
- A flow chart of all kit components with instructions for completion
- Study specific documents (e.g., 24-hours dietary recall and Bristol stool identification
 chart)
- Two leak-proof sterile return collection containers (e.g., Thermo Scientific Samco Wide
 Mouth Bio-Tight Specimen Container, Fisher Scientific cat. no. 13-711-56)
- Note: Container size should reflect the amount of feces needed for down-stream
 applications or storage. We mark a with a black to-fill line. Pre-weight dry
 collection container to calculate weight of feces following collection. Add label to
 be filled by participant with time and date of collection.

158	Commode for feces collection (eg: Commode Specimen Collection System; Fisher
159	Scientific cat. no. 02-544-208 or Sterile Collection Device, Therapak [™] ; VWR cat. no.
160	76230-712)
161	• Disposable scoops for collection (e.g., Bel-Art TM Sterile Sampler Spoons; Fisher
162	Scientific cat. no. 14-429-D)
163	• Wooden tongue depressors (Fisher Scientific cat. no. S80332)
164	• Biohazard specimen transport bag (e.g., Fisher Scientific cat. no. 22-310-094)
165	• Absorbent material for packing of biological liquids (e.g., Therapak TM absorbent
166	materials; Fisher Scientific cat. no. 22-130-041)
167	• Non-latex, chemically impermeable gloves
168	• Biohazard bag (e.g., Bel-Art TM 1.5 mil thick biohazard disposal bag; Fisher Scientific cat.
169	no. 03-411-700)
170	• Pens and markers for completing documents
171	• Transport box or bag (e.g., Therapak Box; Fisher Scientific cat. no. 22-130-470)
172	
173	Feces Stabilization Buffer - On site
174	• 1X phosphate buffered saline (pH 7.4; Wisent cat. no. 311-010-CL)
175	• Sodium thioglycolate (1 g/L; MilliporeSigma cat. no. 1066910500) or L-Cysteine (1
176	mg/mL; MilliporeSigma cat. no. C7352)
177	
178	Equipment
179 180	• Serological pipettes and pipettor
181	 Autoclave or Disposable Filter Units (0.20 μm; e.g., Fisher Scientific cat. no.
182	FB12566504)
183	• Anerobic Chamber (e.g., Sheldon Maunfacturing cat. no. BAA30022)
184	 Dissolved Oxygen Meter (e.g., Extech Instruments cat. no. DO210)
185	
185 186	Procedure

188	1.	Steriliz	ze 1X PBS (pH 7.4) by autoclave or 0.20 μm vacuum filtering
189	2.	Place in	nto an anerobic chamber with cap loosened for >24-hours or until O ₂ -level
190		is <0.5	mg/L
191	3.	Sodiun	n thioglycolate (1 g/L; MilliporeSigma cat. no. 1066910500) or L-Cysteine
192		(1 mg/1	mL; MilliporeSigma cat. no. C7352)
193	4.	Mix we	ell.
194	5.	Add 60) mL of deoxygenated feces stabilization buffer to leak-proof collection
195		contair	ner. Ensure cap is tightened to prevent oxygenation of buffer.
196		0	NOTE: Feces stabilization buffer can be stored at 4 °C. Before aliquoting
197			ensure dissolved O ₂ -level is < 0.5 mg/L. Weigh container pre- and post-
198			buffer addition to note weight of buffer added during collection.
199	Feces Sample	Kit Ass	embly and Collection
200	6.	Assem	ble components listed above for sample collection kit.
201	7.	Coordi	nator should add de-identifying number to the kit and deliver kit to
202		particip	pant pre-instructed on collection according to the following general flow-
203		chart fo	or sample collection instructions.
204		a.	Wash hands thoroughly. NOTE: Gloves can be worn.
205		b.	Empty bladder completely. NOTE: The feces samples should not be
206			contaminated by urine.
207		c.	Collect stool sample into the disposable container. NOTE: The sample
208			must not contact the toilet water.
209		d.	Using the scoop, collect feces from the middle of the specimen and
210			directly put it into the dry collection container to the black fill line.
211		e.	Add 60 mL of deoxygenated feces stabilization buffer.
212		f.	Tightly close container.
213		g.	Label the container with the time and date the sample was collected.
214		h.	Place in biohazard specimen transport bag with absorbent material. Seal.
215		i.	Throw all wastes into the biohazard bag and seal.
216		j.	Place specimen bag and waste bag into secondary transport box or bag.
217		k.	Wash hands thoroughly.

218	1. Store the sample at room temperature and return within 1 hour to the study
219	coordinator. The kit will contain a de-identifying number.
220	m. Complete any study documents (e.g., 24 hours dietary recall form and
221	Bristol stool identification page). Return to study coordinator.
222	Laboratory Sample Deliver and Processing
223	8. The coordinator should deliver fecal sample to the laboratory.
224	9. The fecal sample should be placed into the anerobic chamber immediately. NOTE: If
225	sample cannot be processed immediately, sample can be placed at 4°C for up to 48-hours.
226	Check that container lid is tight to ensure sample remains anaerobic.
227	10. Fecal samples should be processed to a 20% (w/v) slurry in sterile 1X PBS (pH 7.4) and
228	1 mg/mL L-Cysteine for immediate RapiAIM or to a 20% (w/v) slurry in sterile 1X PBS
229	(pH 7.4) containing 10% (v/v) glycerol (MilliporeSigma cat. no. G5516) and 1 mg/mL L-
230	Cysteine for aliquoting and storage at -80 $^{\circ}$ C according to Method for Fecal Processing
231	for RapidAIM and Storage in Supplementary Methods 2.
232	
232	Fecal Sample Collection - Off Site
	 Fecal Sample Collection - Off Site CAUTION: Human feces is a level 2 biological reagent. Follow any regulations
233	-
233 234	• CAUTION: Human feces is a level 2 biological reagent. Follow any regulations
233 234 235	 CAUTION: Human feces is a level 2 biological reagent. Follow any regulations and requirements for proper packaging and shipment of level 2 biological
233234235236	 CAUTION: Human feces is a level 2 biological reagent. Follow any regulations and requirements for proper packaging and shipment of level 2 biological materials.
 233 234 235 236 237 	 CAUTION: Human feces is a level 2 biological reagent. Follow any regulations and requirements for proper packaging and shipment of level 2 biological materials. Materials and Reagents
 233 234 235 236 237 238 	 CAUTION: Human feces is a level 2 biological reagent. Follow any regulations and requirements for proper packaging and shipment of level 2 biological materials. Materials and Reagents A flow chart of all kit components with instructions for completion
 233 234 235 236 237 238 239 	 CAUTION: Human feces is a level 2 biological reagent. Follow any regulations and requirements for proper packaging and shipment of level 2 biological materials. Materials and Reagents A flow chart of all kit components with instructions for completion Study specific documents (e.g., 24-hours dietary recall and Bristol stool identification
 233 234 235 236 237 238 239 240 	 CAUTION: Human feces is a level 2 biological reagent. Follow any regulations and requirements for proper packaging and shipment of level 2 biological materials. Materials and Reagents A flow chart of all kit components with instructions for completion Study specific documents (e.g., 24-hours dietary recall and Bristol stool identification chart)
 233 234 235 236 237 238 239 240 241 	 CAUTION: Human feces is a level 2 biological reagent. Follow any regulations and requirements for proper packaging and shipment of level 2 biological materials. Materials and Reagents A flow chart of all kit components with instructions for completion Study specific documents (e.g., 24-hours dietary recall and Bristol stool identification chart) Two leak-proof sterile return collection containers (e.g., Thermo Scientific Samco Wide
 233 234 235 236 237 238 239 240 241 242 	 CAUTION: Human feces is a level 2 biological reagent. Follow any regulations and requirements for proper packaging and shipment of level 2 biological materials. Materials and Reagents A flow chart of all kit components with instructions for completion Study specific documents (e.g., 24-hours dietary recall and Bristol stool identification chart) Two leak-proof sterile return collection containers (e.g., Thermo Scientific Samco Wide Mouth Bio-Tight Specimen Container, Fisher Scientific cat. no. 13-711-56)
 233 234 235 236 237 238 239 240 241 242 243 	 CAUTION: Human feces is a level 2 biological reagent. Follow any regulations and requirements for proper packaging and shipment of level 2 biological materials. Materials and Reagents A flow chart of all kit components with instructions for completion Study specific documents (e.g., 24-hours dietary recall and Bristol stool identification chart) Two leak-proof sterile return collection containers (e.g., Thermo Scientific Samco Wide Mouth Bio-Tight Specimen Container, Fisher Scientific cat. no. 13-711-56) Note: Container size should reflect the amount of feces needed for down-stream

247	•	Commode for feces collection (eg: Commode Specimen Collection System; Fisher
248		Scientific cat. no. 02-544-208 or Sterile Collection Device, Therapak TM ; VWR cat. no.
249		76230-712)
250	•	Disposable scoops for collection (e.g., Bel-Art TM Sterile Sampler Spoons; Fisher
251		Scientific cat. no. 14-429-D)
252	•	Wooden tongue depressors (Fisher Scientific cat. no. S80332)
253	•	Biohazard specimen transport bag (e.g., Fisher Scientific cat. no. 22-310-094)
254	•	Absorbent material for packing of biological liquids (e.g., Therapak TM absorbent
255		materials; Fisher Scientific cat. no. 22-130-041)
256	•	Non-latex, chemically impermeable gloves
257	•	Pens and markers for completing documents
258	•	Leak proof refrigerant shippers; nontoxic and food-grade gel refriderants (Fisher
259		Scientific cat. no. 22-130-070). NOTE: We include 8 packs for large, insulated shipping
260		box to maintain temperature at <8°C for up to 72-hours.
261	•	Two boxes to send sample kit components out to participants. One box to house feces
262		stabilization buffer to be stored at 4°C by participant and one box to house cold packs to
263		be stored at -20°C by participant.
264	•	Bubble wrap for packing (Fisher Scientific cat. no. NC0513328
265	•	Return tape (Find Tape.com LLC cat. no. JVCC RT 150/223 B)
266	•	Insulated Transport Box for refrigerated return of level 2 biological substances (e.g.,
267		Therapak TM Expanded Polystyrene Insulated Shippers; Fisher Scientific cat. no. 22-130-
268		407
269	•	Temperature recorder. NOTE: If temperature tracking is essential a recorder can be added
270		to return package to monitor temperature throughout travel (e.g., WarmMark Fisher
271		Scientific cat. no. 22-111-029
272	٠	Shipping labels including exempt human specimen shipping label
273		
274	Feces S	Stabilization Buffer - Off Site
275	•	1X phosphate buffered saline (pH 7.4; Wisent cat. no. 311-010-CL)

276		• Sodium thioglycolate (1g/L; MilliporeSigma cat. no. 1066910500) or L-Cysteine
277		(1mg/mL; MilliporeSigma cat. no. C7352)
278		• Glycerol (10% (v/v); MilliporeSigma cat. no. G5516)
279		
280	Equ	ipment
281		Serological pipettes and pipettor
282		• Autoclave or Disposable Filter Units (0.20 μm; eg.; Fisher Scientific cat. no.
283		FB12566504)
284		• Anerobic Chamber (e.g., Sheldon Maunfacturing cat. no. BAA30022)
285		 Dissolved Oxygen Meter (e.g., Extech Instruments cat. no. DO210)
286		
287	Proc	edure
288	Fece	es stabilization and storage buffer preparation
289	1.	Prepare 1X PBS (pH 7.4) + 10% (v/v) glycerol and sterilize by autoclave or 0.20 μ m
290		vacuum filtering
291	2.	Place into an anerobic chamber with cap loosened for $>$ 24-hours or until O ₂ -level is $<$ 0.5
292		mg/L
293	3.	Weigh L-Cysteine for addition to 1X PBS (pH7.4) + 10% (v/v) glycerol at 1 mg/mL.
294	4.	Mix well.
295	5.	Add 60 mL of deoxygenated feces stabilization buffer to leak-proof collection container.
296		Ensure cap is tightened to prevent oxygenation of buffer.
297	0	NOTE: Feces stabilization buffer can be stored at 4 °C. Before aliquoting ensure dissolved
298		O_2 -level is < 0.5 mg/L. Weigh container pre- and post- buffer addition to note weight of
299		buffer added during collection. NOTE: For off-site collection we place a 2-week expiry
300		date on these buffers and ask the participant request fresh buffer if sample not collected
301		within two weeks of delivery.
302		
303	Fece	es Sample Kit Assembly and Collection
304	6.	Assemble components listed above for sample collection kit.

305	7.	Co	ordinator should add de-identifying number to the kit and deliver kit to participant pre-			
306		ins	instructed on collection according to the following general flow-chart for sample collection			
307		ins	instructions.			
308		a.	Upon receipt of kit, the participant is instructed to open the outer transport box. The			
309			participant should store feces stabilization buffer at 4°C in a refrigerator and box			
310			containing cold packs in their freezer. Other components can remain at room			
311			temperature.			
312		b.	When participant is ready to collect feces sample, they should gather components of			
313			kit stored at room temperature, in refrigerator and in freezer.			
314		c.	Wash hands thoroughly. NOTE: Gloves can be worn.			
315		d.	Empty bladder completely. NOTE: The feces samples should not be contaminated by			
316			urine.			
317		e.	Collect stool sample into the disposable container. NOTE: The sample must not			
318			contact the toilet water.			
319		f.	Using the scoop, collect feces from the middle of the specimen and directly put it into			
320			the dry collection container to the black fill line.			
321		g.	Add 60 mL of deoxygenated feces stabilization buffer.			
322		h.	Tightly close container.			
323		i.	Label the container with the time and date the sample was collected.			
324		j.	Place specimen containers into secondary specimen bag with absorbent material and			
325			temperature recorder.			
326		k.	Throw all wastes into their garbage as appropriate.			
327		1.	Wash hands thoroughly.			
328		m.	Place two cold packs at bottom of insulated shipping box then place specimen bag into			
329			box and surround with remaining cold packs. The kit will contain a de-identifying			
330			number.			
331		n.	Close insulated box.			
332		0.	Complete any study documents (e.g., 24 hours dietary recall form and Bristol stool			
333			identification page) and place on top of insulated box.			
334		p.	Seal outer box with return tape and call coordinator to ship back to site. Study			
335			coordinator will have return shipping labels already on shipping box.			

- 336 Laboratory Sample Deliver and Processing
- 337 8. The coordinator will receive shipment, remove any study documents and should deliver338 fecal sample to the laboratory.
- 339 9. The fecal sample should be placed into the anerobic chamber immediately. NOTE: If
 340 sample cannot be processed immediately, sample can be placed at 4 °C for up to 48-hours
- 341 from deposit. Check deposit time to calculate 48-hours deadline for processing.
- 342 **11.** Fecal samples should be processed to a 20% (w/v) slurry in sterile 1X PBS (pH 7.4)
- 343 containing 10% (v/v) glycerol and 1 mg/mL L-Cysteine for aliquoting and storage at -
- 344 80 °C according to Method for Fecal Processing for RapidAIM and Storage in
- 345 Supplementary Methods 2.

346 Supplementary Method 2

tubes)

373

347 Fecal Sample Processing for RapidAIM and for Long-term Storage at -80 °C

• CAUTION: Human feces is a level 2 biohazard (risk group 2) that can contain 348 pathogens such as bacteria, viruses, and parasites. Immunizations may be 349 available against some pathogens such as hepatitis. Personal protective equipment 350 includes googles, gloves and lab coat should be worn when handling feces. 351 Biosafety cabinets and centrifuges with lids to contain aerosols and spills should 352 be used. Samples, equipment, and waste materials need to be handled, 353 decontaminated, and disposed of according to institutional biosafety guidelines. 354 • NOTE: If processing feces for immediate RapidAIM follow protocol below 355 omitting the glycerol from the buffers which is required for long-term storage and 356 357 viability of the isolated microbiome. 358 359 **Materials and Reagents** • Solid Glass beads 5mm (Fisher Scientific cat. no. 11-312C) 360 • 500 mL plastic bottles (e.g., NalgeneTM Wide Mouth Packaging Bottles Leak Proof with 361 362 Closure; Fisher Scientific cat. no. 03-313-14E • 50 mL conical centrifuge tubes (Fisher Scientific cat. no. 14-959-49A) 363 • Wooden tongue depressors (Fisher Scientific cat. no. S80332) 364 • Gauze (Ultident cat. no. 400-4122) 365 • Funnels (Fisher Scientific cat. no. 10-500) 366 Sterile Centifuge Filter Units 100 µm (e.g., SteriflipTM Sterile Centrifuge Filter Units; 367 • MilliporeSigma cat. no. SCNY00100) 368 1X phosphate buffered saline (pH 7.4; Wisent cat. no. 311-010-CL) 369 • Sodium thioglycolate (1g/L; MilliporeSigma cat. no. 1066910500) or L-Cysteine 370 • (1mg/mL; MilliporeSigma cat. no. C7352) 371 372 Spin filtration units with 100 µm filters (Ciro Manufacturing Corporation, customized •

374	Equipment
375	• Clinical centrifuge with rotor for 50 mL conical centrifuge tubes and rotor buckets with
376	sealed lids
377	Serological pipettes and pipettor
378	• Autoclave or Disposable Filter Units (0.20 μm; e.g., Fisher Scientific cat. no.
379	FB12566504)
380	• Anerobic Chamber (e.g., Sheldon Maunfacturing cat. no. BAA30022)
381	• Dissolved Oxygen Meter (e.g., Extech Instruments cat. no. DO210)
382	
383	Procedure
384	Feces stabilization and storage buffer preparation
385	• NOTE: Ensure buffer preparation precedes sample delivery by at least 24-hours to
386	ensure ample time for deoxygenation of storage buffer. Longer times will be
387	necessary depending upon volume of buffer preparation. If using stored-buffers
388	ensure they remained deoxygenated.
389	\circ Make excess buffer based upon final feces storage at 20% (w/v) in storage buffer.
390	1. Prepare 1X PBS (pH 7.4) + 10% (v/v) glycerol and sterilize by autoclave or 0.20 μ m
391	vacuum filtering.
392	2. Place into an anerobic chamber with cap loosened for >24-hours or until O_2 -level is <0.5
393	mg/l
394	3. Weigh L-Cysteine for addition to 1X PBS (pH7.4) + 10% (v/v) glycerol at 1 mg/mL.
395	4. Mix well.
396	• NOTE: Feces stabilization and storage buffer can be stored at 4°C. Before aliquoting
397	ensure dissolved O_2 -level is < 0.5 mg/L.
398	
399	Anaerobic chamber Preparation
400	5. Bring materials and equipment into anaerobic chamber, including
401	a. 15 mL Solid Glass beads - sterilized by autoclaving
402	b. 1x 500 mL plastic bottles - sterile or sterilized by autoclaving
403	c. 10x 50 mL conical centrifuge tubes - sterile or sterilized by autoclaving
404	d. 10- and 25- mL serological pipettes and pipettor

405		e.	Wooden tongue depressors - sterilized by autoclaving
406		f.	Gauze - sterilized by autoclaving (for Processing Method 1) OR
407		g.	Sterile Centrifuge Filter Units 100 µm (for processing Method 2)
408			
409	Det	ermin	ing addition of stabilization and storage buffer for final 20% (w/v) fecal slurry
410	6.	Amo	unt of additional stabilization and storage buffer to be added to participant sample
411		a.	Weight of feces = (weight of feces sample + buffer + container) - buffer weight -
412			container weight
413		b.	Total buffer needed for 20% fecal slurry = Weight of feces/0.20
414		c.	Amount of additional buffer to add = total buffer needed - 60 mL added by participant
415	Pro	cessin	g Feces to 20% (w/v) slurry in stabilization and storage buffer
416	7.	Place	fecal sample into anaerobic chamber.
417			\circ $\;$ NOTE: The oxygen level of the buffer + feces can be measured and recorded. We
418			exclude samples from further processing if O_2 -level is >1 mg/L for samples
419			collected 8-hours prior as exposure to higher O2-levels for extended periods
420			indicated leaky containers and can affect microbiome viability/composition. Our
421			experience shows variable O2-levels from 0.2-5 mg/L for samples collected on
422			site or > 8 h from collection time.
423	8.	Mix	sample and buffer by vigorous shaking in original container.
424	9.	Pour	sample into 500 mL container. Depending on consistency of fecal slurry, wooden
425		tongı	e depressors can aid in transfer.
426	10.	Add	glass beads and additional stabilization and storage buffer to make 20% (w/v) fecal
427		slurr	y. Mix vigorously. Wooden tongue depressors can aid in mixing.
428	Cla	rifying	g Fecal Slurry
429			• NOTE: We have developed four alternative methods of clarifying fecal slurry of
430			debris while maintaining microbiome composition. Each has pros and cons. The
431			user can decide which method best suits their lab based upon these.
432			• Method 1 - Gauze Filtration
433			Pro - gauze is inexpensive; required no additional equipment
434			Con - more time consuming

435	\circ Method 2 - 100 μ m vacuum filtration		
436	Pro - fast- time efficient; very reproducible		
437	Con- filters ~4\$/sample; requires clinical centrifuge; filter can clog requiring		
438	transfer to additional filter		
439	\circ Method 3 - 100 μ m spin tube filtration		
440	Pro - fast- time efficient; very reproducible		
441	Con- filters ~4\$/sample; requires clinical centrifuge; spin tube can clog requiring		
442	transfer to additional spin tube		
443	• Method 4-100 g spin		
444	Pro - fast- time efficient; very reproducible		
445	Con- requires clinical centrifuge		
446	Method 1 - Gauze Filtration		
447	11a. Place funnel onto 500 mL container and line funnel with 4-layers of gauze		
448	12a. Pour a portion of fecal slurry into funnel.		
449	13a. Use wooden tongue depressor to press slurry through		
450	14a. Repeat until all slurry is cleared through gauze; changing gauze as needed		
451	15a. Aliquot gauze-filtered 20% (w/v) fecal slurry and store at -80 °C.		
452	Method 2 - 100 µm Vacuum Filtration		
453	11b. Aliquot fecal slurry into 50 mL centrifuge tubes		
454	12b. Centrifuge at 100 g for 5 min		
455	13b. Pour or pipette upper slurry into vacuum centrifuge tubes avoiding lower debris pellet and		
456	any floating debris.		
457	14b. Vacuum filter slurry through 100 μ m filter. We use a manual vacuum pipettor.		
458	15b. Aliquot 100 μ m vacuum-filtered 20% (w/v) fecal slurry and store at -80 °C.		
459	Method 3 - 100 µm Spin Tube Filtration		
460	11c. Aliquot 20 mL fecal slurry into spin tube containing a 100 μm filtering insert		
461	12c. Centrifuge at 100 g for 5 min		
462	13c. Aliquot 100 μ m spin tube -filtered 20% (w/v) fecal slurry and store at -80 °C.		
463			

- 464 Method 4 100 g Spinning
- 465 11d. Aliquot fecal slurry into 50 mL centrifuge tubes.
- 466 12d. Centrifuge at 100 g for 5 min.
- 467 13d. Pipette upper slurry into a new 50 mL centrifuge tube. Note: If there is floating debris
- following 100 g spin pipette mid slurry below debris- into a new 50 mL centrifuge tube.
- 469 14d. Aliquot 100 g spun 20% (w/v) fecal slurry and store at -80 °C.

470	Supplementary Method 3
471	96-well Plate Based Manual Digestion and Desalting Workflow
472	Materials and Reagents
473	• Urea (Millipore-Sigma - Sigma-Aldrich, cat. no. U5378)
474	• Tris (hydroxymethyl)aminomethane (Calbiochem - OmniPur®, cat. no. 9230)
475	Hydrochloric acid (HCl, Fisher Chemical, cat. no. A144S)
476	• CAUTION: same as above
477	• Sodium dodecyl sulfate (Millipore-Sigma - Sigma-Aldrich, cat. no. L3771)
478	• CAUTION: Sodium dodecyl sulfate causes skin, eye and respiratory irritation. Use
479	personal protective equipment.
480	Acetone (Millipore-Sigma - Sigma-Aldrich, cat. no. 179124)
481	• CAUTION: Acetone is highly flammable liquid and vapor, causes serious eye
482	irritation, and may cause drowsiness or dizziness. Keep away from open flames, hot
483	surfaces and sources of ignition. Use only under a chemical fume hood. Use personal
484	protective equipment.
485	Acetic acid, glacial (HAc, Fisher Chemical, cat. no. A38-212)
486	• CAUTION: Flammable liquid and vapor. Use personal protective equipment. Keep
487	away from open flames, hot surfaces and sources of ignition. Use only under a
488	chemical fume hood.
489	• Acetonitrile (Millipore-Sigma - Sigma-Aldrich, cat. no. 34851)
490	• CAUTION: Highly flammable and toxic. Keep away from open flames, hot surfaces
491	and sources of ignition. Use only under a chemical fume hood. Use personal protective
492	equipment.
493	• Ethyl alcohol, anhydrous (Commercial Alcohols, cat. no. P016EAAN)
494	• CAUTION: Ethanol is highly flammable. Keep away from open flames, hot surfaces
495	and sources of ignition.
496	• Formic acid (Millipore-Sigma - Sigma-Aldrich, cat. no. F0507)
497	• CAUTION: Flammable liquid and vapor, causes severe skin burns and eye damage
498	and toxic if inhaled. Keep away from open flames, hot surfaces and sources of ignition.
499	Use only under a chemical fume hood. Use personal protective equipment.
500	• cOmplete TM protease inhibitor cocktail (Millipore-Sigma - Roche, cat. no. 04693116001)

501	•	Dithiothreitol (Millipore-Sigma - Sigma-Aldrich, cat. no. 43815)
502	•	Iodoacetamide (Millipore-Sigma - Sigma-Aldrich, cat. no. I1149)
503	•	Trypsin (Worthington Biochemical, cat. no. L5003740)
504	•	ReproSil-Pur 120 C 18-AQ, 10 µm (Dr. Maisch GmbH, cat. no. r10.aq.0010)
505	•	DC Protein Assay Reagents A, B and S (Bio-Rad Laboratories, cat. no. 5000113,
506		5000114 and 5000115)
507		
508 509	Equip •	ment Precipitation plate: Corning® 96 well PP 1.2 mL cluster tubes (Sigma-Aldrich, cat. no.
510		CLS4413)
511	•	Precipitation plate lid: 96-well Polyethylene Cluster Tube 8-Cap Strips (Sigma-Aldrich,
512		cat. no. CLS4418)
513	•	Lid for self-packed desalting tips: Nunc [™] 96 Well Caps for 1.0 mL Polystyrene
514		DeepWell TM Plates (Thermo Scientific, cat. no. 278616)
515	•	Desalting plate: Axygen® 96-well Clear Round Bottom 2 mL Polypropylene Deep Well
516		Plate (Axygen, cat. no. P-DW-20-C-S)
517	•	Elution plate: 0.8ml 96-well storage plate (Thermo Scientific, cat. no. AB-0859)
518	•	Elution plate lid: Nunc TM 96 Well Caps for 1.0mL Polystyrene DeepWell TM Plates
519		(Thermo Scientific, cat. no. 278616)
520	•	Reservoir: Axygen TM Single Well High Profile Reagent Reservoir (Axygen, cat. no.
521		RESSW96HP)
522	•	Four thermomixers each with a plate adaptor (Eppendorf, model ThermoMixer C - cat.
523		no. 5382000023 with SmartBlock FP - cat. no. 5306000006 and ThermoTop Heated
524		Cover - cat. no. 5308000003; or equivalent)
525	•	96-channel electronic pipette (Eppendorf, epMotion® 96, cat. no. 5069000209; or
526		equivalent)
527	•	20 µL filtered tips (Vertex, cat. no. 4237NAF)
528	•	ReproSil-Pur 120 C18-AQ, 10 µm (Dr. Maisch GmbH, cat. no. r10.aq.0010)
529	•	Centrifuge with a deepwell-plate rotor (Eppendorf, Model 5810R, cat. no.
530		0226270405810R; or equivalent)

531 Reagent setup

532 1M Tris-HCl stock solution, pH 8.0

- 533 Weigh out 12.11 g Tris base and add 80 mL of ddH₂O. While mixing on a magnetic stirrer,
- observe pH and slowly add HCl solution to reduce the pH to 8.0. Top up the solution to 100 mL
- 535 using ddH₂O and double check pH.

536 **Protein resuspension buffer**

537 6 M urea in 100 mM Tris-HCl, (pH 8)

538 0.25 M DTT solution

- 539 Weigh 193 mg of DTT powder and add 5 mL ddH₂O. Prepare freshly before use or prepare in
- 540 advance and store solution at -80 °C.

541 0.5 M IAA solution

- 542 Weigh 462 mg of IAA powder and add 5 mL ddH₂O. Prepare freshly before use or prepare in
- 543 advance and store solution at -80 °C.

544 **Trypsin solution**

545 100 mM Tris-HCl buffer containing 2 µg/mL trypsin, 1 mL is required per sample.

546 **Desalting buffers**

- 547 $_{\circ}$ Wash buffer: 0.1% (v/v) FA in water
- 548 $_{\circ}$ Elution buffer: 0.1% FA in 80% ACN: 80% (v/v) ACN and 0.1% (v/v) FA in water
- $_{\odot}$ Acidifying buffer: 10% FA: 10% (v/v) FA in water; and 5% FA: 5% (v/v) FA in water

550 Self-packed desalting tip columns

- ⁵⁵¹ ∘ Slice crosses into each cap of the Nunc[™] 96 Well Caps.
- $_{\circ}$ Cut the 20 μL filtered tips to the lower end of the filtering frits.
- $_{\odot}$ Insert the cut 20 μL filtered tips into the opening of the well caps.
- ⁵⁵⁴ Place the filter-tip-inserted well caps on a desalting plate.
- ⁵⁵⁵ For each set of 96 well desalting tips, weigh 600 mg of ReproSil-Pur 120 C18-AQ, 10 μm
 ⁵⁵⁶ beads and add 6,000 μL of 100% ACN.
- ⁵⁵⁷ . Immediately after sufficiently mixing to resuspend the C18 beads, use a 96-channel liquid
- handler or a multi-channel pipette to aliquot 50 μ L of the resuspension into each desalting tip.

 \circ Centrifuge at 50-100 g for 1 min to remove ACN.

- 561 Procedure
- 562 Digestion
- 563 Use a 96 channel liquid handlers or multi-channel pipettes to add 4 µL 0.25 M DTT solution to
- each well. Incubate at 56 °C, 800 rpm for 30 min in a ThermoMixer.
- 565 1. Cool the plates to room temperature.
- 566 2. Add 4 μ L 0.5 M IAA solution to each well. Incubate at room temperature for 40 min.
- 567 3. Add 1,000 μ L 100 mM Tris·HCl buffer containing 2 μ g/mL trypsin (trypsin:proteins = 1:50).
- 4. Mix sufficiently, cover the plates firmly and incubate at 37 °C, 800 rpm for 24 h in
- 569 ThermoMixers.
- 570 Desalting
- 571 5. After digestion, centrifuge at 300 g for 1 min to pull down any liquid condensate on the lid.
- 572 6. Use a 96 channel liquid handlers or multi-channel pipettes to acidify sample with 100 μL
 573 10% FA and mix sufficiently. Use a pH strip to verify that the pH value is adjusted to 2-3.
- 574 7. Activate the self-packed desalting columns by adding 300 μ L of 100% ACN to each tip.
- 575 Centrifuge at 100 g for 1 min.
- 576 8. Repeat step 8. Discard liquids in the desalting plate.
- 577 9. Equilibrate the tips by adding 300 μ L of 0.1% FA. Centrifuge at 200 g for 2 min.
- 578 10. Repeat step 10. Discard liquids in the desalting plate.
- 579 11. Load 300 μL samples to the activated columns. Centrifuge at 200 g for 2 min.
- 580 12. Repeat step 12 until all samples are loaded.
- 581 13. Wash the columns by adding 300 μ L of 0.1% FA. Centrifuge at 200 g for 2 min.
- 582 14. Repeat step 14.
- 583 15. Replace the desalting plate into the elution plate.
- 584 16. Add 200 μ L 80% ACN + 0.1% FA to each desalting tip, centrifuge at 100 g for 1 min.
- 585 17. Repeat step 17.
- 586 18. From the elution plate, aliquot 120 µL of the eluted solution to another 96-well plate to be
 587 used for TMT labeling.
- 588 19. From the elution plate, aliquot 20 µL of the eluted solution into a reservoir plate. Mix
- sufficiently. From the mixture, aliquot 120 µL to each well of the first column of the TMT
- 590 labelling sample plates prepared in step 19.

- 591 20. The remainder can be kept as back-up or for label-free quantification in an LC-MS/MS.
- 592 21. Use a SpeedVac with a plate adapter to dry the samples under room temperature.
- 593 Pause point: Typically, dry peptides can be stored for ≤ 1 month at -20 °C or ≤ 6 months 594 at -80 °C.

Reagent	Molecular	Stock	Final stock	Description					
	Weight Solvent co		concentration						
	(g/mol)								
K ₂ HPO ₄	174.18	ddH ₂ O	1 M	Weight out reagent on scale and					
KH ₂ PO ₄	136.09	ddH ₂ O	1 M	transfer to vessel with 80% o					
NaCl	58.44	ddH ₂ O	1 M	required solvent volume. Mix/vortez					
MgSO ₄ ·7H ₂ O	246.47	ddH ₂ O	1 M	solution until the reagent is full					
CaCl ₂	110.96	ddH ₂ O	1 M	dissolved. Transfer solution graduated cylinder and add remaini ddH ₂ O to final volume. Store at roo temperature					
Tween 80	N/A	ddH ₂ O	10% (v/v)	Reverse pipette Tween 80 to Falco tube as Tween 80 is very viscous. Ad ddH ₂ O. Vortex thoroughly as Twee 80 is hard to mix to homogeneity Store at room temperature					
Mucin	N/A	N/A	N/A	Prepare $0.4g/100$ mL of medialiquots of mucin. Mucin is ver affected by static electricity. The us of a static gun is highly recommende with portioning the mucin. Stor aliquots at 4 °C					
Hemin	N/A	40 mM NaOH	2 mg/mL	Prepare 40 mM NaOH. Weigh ou Hemin in biosafety cabinet and add to appropriate volume of 40 mM NaOH to make a 2 mg/mL solution Filter resulting hemin solution throug a 0.22 μ m filter. Aliquot filtere hemin solution (200 μ L per 100 mL c culture media) at -20 °C. Cove aliquots with foil as hemin is light sensitive					
Vitamin K1	N/A	100% Ethanol	10 mg/mL	Weigh out Vitamin K1 to make 10 mg/ml solution. Aliquot Vitamin H solution (100 μ L per 100 mL c culture media) and store at 4°C					
L-cysteine	N/A	1M HCl	83.33 mg/mL	Prepare 1M HCl. Weigh out L cysteine to make 83.33 mg/m solution. Aliquot L-cysteine solutio (600 µL per 100 mL of culture media and store at -20 °C					

595 Supplementary Table 1. Preparation of stock solutions for RapidAIM culture media

597 Supplementary Table 2. Culture Media Preparation Table

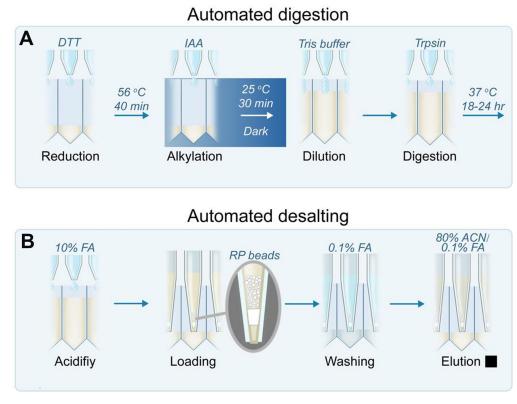
Reagent	Volume per	ents into 80 mL ddH ₂ O (final volume of 100 mL media) Description
Keagem	100 mL	Description
	media	
K ₂ HPO ₄ stock	258.3 µL	Pipette volumes of reagent stock solutions to autoclavable
KH ₂ PO ₄ stock	330.6 μL	culture media bottle with 80% ddH ₂ O of desired media
NaCl stock	1,540 μL	volume. Put magnet stir bar inside bottle and mix on
MgSO ₄ ·7H ₂ O stock	36.5 μL	moderate speed
CaCl ₂ stock	81 µL	
Tween 80 stock	2,000 μL	_
		ante for aulture medie
		ents for culture media
Reagent	Weight per 100 mL	Description
	media	
Sodium cholate	0.025 g	Weigh out each reagent using weigh paper and scale.
Sodium	0.025 g	Transfer reagent to same autoclavable culture media
chenodeoxycholate	0.025 g	bottle. Rinse stock reagent powder on weigh paper with
Peptone water	0.20 g	some ddH_2O into the bottle. Leave solution to mix for a
Yeast extract	0.20 g	total of 10 min
NoUCO.	$\perp 0.40 \alpha$	
Step 3. Transfers cu desired volume. Tra		graduated cylinder and add remaining ddH ₂ O to reach ture media to autoclavable bottle and have media
Step 3. Transfers cu desired volume. Tra autoclaved Step 4. Place culture	lture media to nsfer back cul	
Step 3. Transfers cu desired volume. Tra autoclaved Step 4. Place culture overnight	lture media to nsfer back cul e media bottle	ture media to autoclavable bottle and have media in anaerobic chamber with lid ajar to deoxygenate
Step 3. Transfers cu desired volume. Tra autoclaved Step 4. Place culture overnight Step 5. Add non-aut	lture media to nsfer back cul e media bottle oclavable reag	ture media to autoclavable bottle and have media in anaerobic chamber with lid ajar to deoxygenate gents to culture media
Step 3. Transfers cu desired volume. Tra autoclaved Step 4. Place culture overnight Step 5. Add non-aut	Iture media to nsfer back cul e media bottle oclavable reag	ture media to autoclavable bottle and have media in anaerobic chamber with lid ajar to deoxygenate
Step 3. Transfers cu desired volume. Tra autoclaved Step 4. Place culture overnight Step 5. Add non-aut	Iture media to nsfer back cul e media bottle oclavable reag Volume or weight per	ture media to autoclavable bottle and have media in anaerobic chamber with lid ajar to deoxygenate gents to culture media
Step 3. Transfers cu desired volume. Tra autoclaved Step 4. Place culture overnight Step 5. Add non-aut	Iture media to nsfer back cul e media bottle oclavable reag Volume or weight per 100 mL	ture media to autoclavable bottle and have media in anaerobic chamber with lid ajar to deoxygenate gents to culture media
Step 3. Transfers cu desired volume. Tra autoclaved Step 4. Place culture overnight Step 5. Add non-aut Reagent	Iture media to nsfer back cul e media bottle oclavable reag Volume or weight per 100 mL media	ture media to autoclavable bottle and have media in anaerobic chamber with lid ajar to deoxygenate gents to culture media Description
Step 3. Transfers cu desired volume. Tra autoclaved Step 4. Place culture overnight Step 5. Add non-aut Reagent Hemin stock	Iture media to nsfer back cul e media bottle oclavable reag Volume or weight per 100 mL media 200 µL	ture media to autoclavable bottle and have media in anaerobic chamber with lid ajar to deoxygenate gents to culture media Description Sterilize and bring in appropriate pipettes and tips into
Step 3. Transfers cu desired volume. Tra autoclaved Step 4. Place culture overnight Step 5. Add non-aut Reagent Hemin stock Vitamin K1 stock	Iture media to nsfer back cul e media bottle oclavable reag Volume or weight per 100 mL media 200 µL 100 µL	ture media to autoclavable bottle and have media in anaerobic chamber with lid ajar to deoxygenate gents to culture media Description
Step 3. Transfers cu desired volume. Tra autoclaved Step 4. Place culture overnight Step 5. Add non-aut Reagent Hemin stock Vitamin K1 stock L-cysteine stock	Iture media to nsfer back cul e media bottle oclavable reag Volume or weight per 100 mL media 200 µL 100 µL 600 µL	ture media to autoclavable bottle and have media in anaerobic chamber with lid ajar to deoxygenate gents to culture media Description Sterilize and bring in appropriate pipettes and tips into anaerobic chamber. Pipette reagents into deoxygenated media
Step 3. Transfers cu desired volume. Tra autoclaved Step 4. Place culture overnight Step 5. Add non-aut Reagent Hemin stock Vitamin K1 stock L-cysteine stock	Iture media to nsfer back cul e media bottle oclavable reag Volume or weight per 100 mL media 200 µL 100 µL	ture media to autoclavable bottle and have media in anaerobic chamber with lid ajar to deoxygenate gents to culture media Description Sterilize and bring in appropriate pipettes and tips into anaerobic chamber. Pipette reagents into deoxygenated media Transfer 70% of media volume to Mucin aliquot in
Step 3. Transfers cu desired volume. Tra autoclaved Step 4. Place culture overnight Step 5. Add non-aut Reagent Hemin stock Vitamin K1 stock L-cysteine stock	Iture media to nsfer back cul e media bottle oclavable reag Volume or weight per 100 mL media 200 µL 100 µL 600 µL	ture media to autoclavable bottle and have media in anaerobic chamber with lid ajar to deoxygenate gents to culture media Description Sterilize and bring in appropriate pipettes and tips into anaerobic chamber. Pipette reagents into deoxygenated media Transfer 70% of media volume to Mucin aliquot in anaerobic chamber. Vortex media and mucin thoroughly
desired volume. Tra autoclaved Step 4. Place culture overnight Step 5. Add non-aut Reagent Hemin stock	Iture media to nsfer back cul e media bottle oclavable reag Volume or weight per 100 mL media 200 µL 100 µL 600 µL	ture media to autoclavable bottle and have media in anaerobic chamber with lid ajar to deoxygenate gents to culture media Description Sterilize and bring in appropriate pipettes and tips into anaerobic chamber. Pipette reagents into deoxygenated media Transfer 70% of media volume to Mucin aliquot in anaerobic chamber. Vortex media and mucin thoroughly until most of mucin is dissolved. Transfer back the mucir
Step 3. Transfers cu desired volume. Tra autoclaved Step 4. Place culture overnight Step 5. Add non-aut Reagent Hemin stock Vitamin K1 stock L-cysteine stock	Iture media to nsfer back cul e media bottle oclavable reag Volume or weight per 100 mL media 200 µL 100 µL 600 µL	ture media to autoclavable bottle and have media in anaerobic chamber with lid ajar to deoxygenate gents to culture media Description Sterilize and bring in appropriate pipettes and tips into anaerobic chamber. Pipette reagents into deoxygenated media Transfer 70% of media volume to Mucin aliquot in anaerobic chamber. Vortex media and mucin thoroughly
Step 3. Transfers cu desired volume. Tra autoclaved Step 4. Place culture overnight Step 5. Add non-aut Reagent Hemin stock Vitamin K1 stock L-cysteine stock Mucin Step 6. Aliquot some	Iture media to nsfer back cul e media bottle oclavable reag Volume or weight per 100 mL media 200 μL 100 μL 600 μL 0.40 g	ture media to autoclavable bottle and have media in anaerobic chamber with lid ajar to deoxygenate gents to culture media Description Sterilize and bring in appropriate pipettes and tips into anaerobic chamber. Pipette reagents into deoxygenated media Transfer 70% of media volume to Mucin aliquot in anaerobic chamber. Vortex media and mucin thoroughly until most of mucin is dissolved. Transfer back the mucin solution to remaining media solution and gently swirl until media is well mixed edia into tube and measure dissolved oxygen content of
Step 3. Transfers cu desired volume. Tra autoclaved Step 4. Place culture overnight Step 5. Add non-aut Reagent Hemin stock Vitamin K1 stock L-cysteine stock Mucin Step 6. Aliquot some media. Ensure oxyg	Iture media to nsfer back cul e media bottle oclavable reag Volume or weight per 100 mL media 200 µL 100 µL 600 µL 0.40 g	ture media to autoclavable bottle and have media in anaerobic chamber with lid ajar to deoxygenate gents to culture media Description Sterilize and bring in appropriate pipettes and tips into anaerobic chamber. Pipette reagents into deoxygenated media Transfer 70% of media volume to Mucin aliquot in anaerobic chamber. Vortex media and mucin thoroughly until most of mucin is dissolved. Transfer back the mucir solution to remaining media solution and gently swirl until media is well mixed

Time (min)	LC gradient (%B)	Flow rate (µL/min)			
0	5.0	0.300			
108	35.0	0.300			
113	80.0	0.300			
117	80.0	0.300			
117.01	2.0	0.300			
120	Stop run				
LC gradients					
Solvent A	0.1% FA				
Solvent B	80% ACN, 0.1% FA				
Injection volume	2 µL				

Supplementary Table 3. Setup of UltiMate 3000 RSLCnano system

601 Supplementary Table 4. Setup of Orbitrap Exploris 480 mass spectrometer system

Settings	Parameter
Ion source type	NSI
Spray voltage	Static
Positive ion (V)	2,200
Negative ion (V)	600
Ion transfer tube temp (°C)	275
S-lens radio frequency (RF) level (%)	50
Expected LC peak width	30
Full MS setup	
Full MS resolution	120,000
Full MS AGC target	Standard
Full MS maximum injection time	Auto
Scan range (m/z)	350-1,200
Data type	Profile
Polarity	Positive
Intensity threshold	5.0e3
Include charge states	2-5
Dynamic exclusion (s)	60, single charge
MS2	
MS2 resolution	45,000
MS2 AGC target	Standard
MS2 maximum injection time	Auto
Isolation window (m/z)	0.7
HCD collision energy (%)	36
First mass (m/z)	110
Microscans	1
Data type	Centroid
Data dependent mode	Cycle time
Time between master scans (s)	2


603 Supplementary Table 5. Bray-Curtis distance based PERMANOVA results, in-house

buffer collected samples

	Df	SumOfSqs	R2	F	Pr(> F)	Sig.
Storage peroid	2	0.0003209	0.04741	5.4484	0.0022	**
Culture condition	2	0.0055495	0.81977	94.2186	0.0001	***
Storage peroid: Culture condition	4	0.000369	0.05452	3.1328	0.0064	**
Residual	18	0.0005301	0.07831			
Total	26	0.0067696	1			

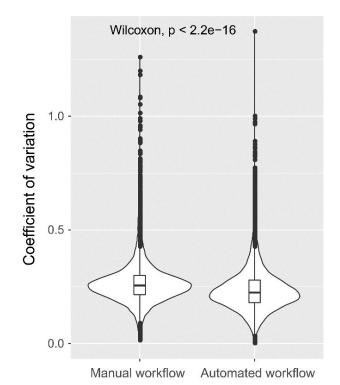
608 Supplementary Table 6. Bray-Curtis distance based PERMANOVA results, GutAlive 609 collected samples

	Df	SumOfSqs	R2	F	Pr(> F)	Sig.
Storage peroid	2	0.0004861	0.07402	5.854	0.0002	***
Culture condition	2	0.0048068	0.73203	57.8902	0.0001	***
Storage peroid: Culture condition	4	0.0005262	0.08013	3.1685	0.0035	**
Residual	18	0.0007473	0.11381			
Total	26	0.0065664	1			

612 **Supplementary Figure 1.** Automated protein digestion and desalting in 96-well plates. (A)

614 Protein samples are reduced with dithiothreitol (DTT) at 56 °C for 30 min, then alkylated with

615 iodoacetamide (IAA) at 25 °C for 40 min in dark. After dilution with 100 mM Tris-HCl buffer

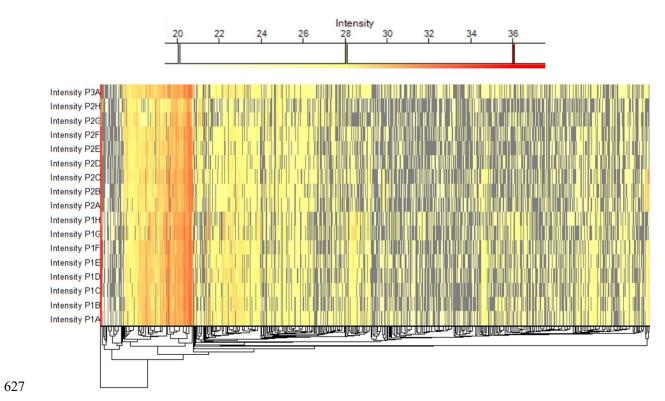

616 (pH 8.0), protein samples are digested using trypsin at 37 °C for 18-24 h on thermo-mixers; (B)

617 After digestion, samples are then acidified to pH 2-3 using 10% formic acid (FA, v/v), then

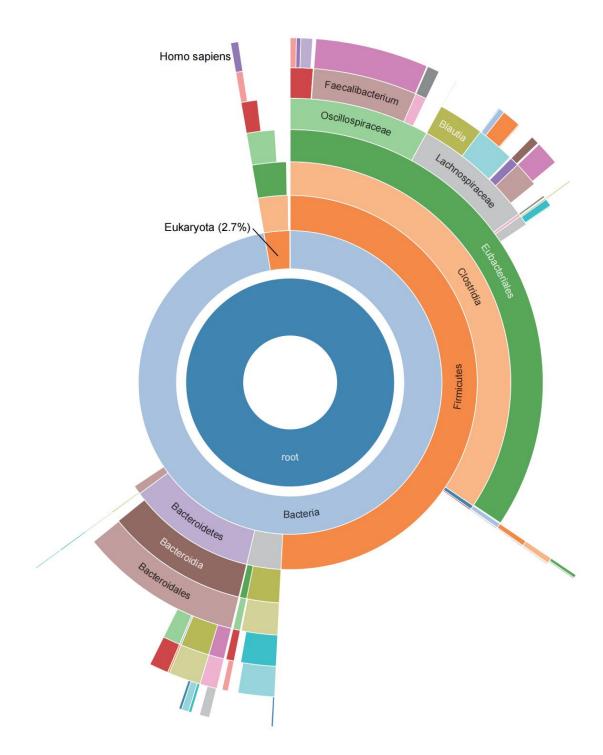
618 loaded to pre-activated columns containing reverse phase (RP) beads. After being washed with

619 0.1% FA (v/v), tryptic peptides are eluted with 80% acetonitrile (v/v)/0.1% FA (v/v). Filled

620 square indicates a pause point to which samples can be stored at -20 °C until further processed.


622 **Supplementary Figure 2**. Comparison between manual workflow and the automated workflow.

623 Aliquots of a microbiome sample were processed using the manual workflow (as described in


624 Supplementary Method 3) and the automated workflow. For each method, technical triplicates

625 were performed. Analysis of coefficient of variation based on peptide intensities showed a

626 significant decrease using the automated workflow (Wilcoxon test).

Supplementary Figure 3. Heatmap showing dataset sparsity on the protein level.

630 Supplementary Figure 4. Taxonomic origin of proteins. Sunburst of taxon-specific peptides

- based on total intensities across samples suggests that a substantial proportion (97.3%) of
- 632 identified peptides belong to bacteria, with the other 2.7% assigned to Eukaryote, specifically
- 633 human proteins.