Supplementary Materials

Fluorinated porous organic frameworks for C₂F₆/CF₄ gases separation

Yinhui Li, Yue Wu, Shanshan Wang, Yu Fu, Xiaoyu Li, Jiahui Zeng, Wenxiang Zhang^{*}, Heping Ma^{*}

School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China.

*Correspondence to: Dr. Wenxiang Zhang, Dr. Heping Ma, School of Chemical Engineering and Technology, Xi'an Jiaotong University, No. 28 Xianning West Road, Beilin District, Xi'an 710049, Shaanxi, China. E-mail: zhangwenxiang@xjtu.edu.cn; maheping@mail.xjtu.edu.cn

Supplementary Figures

Supplementary Figure 1. Powder X-ray diffraction spectra of (A) SPPOF-4F and (B) SPPOF-8F.

Supplementary Figure 2. XPS spectra of (A) SPPOF-4F and (B) SPPOF-8F.

Supplementary Figure 3. Solid-state ¹³C CP/MAS NMR spectra: (A) SPPOF-4F, (B) SPPOF-8F, (C) SP-4Br, (D) Benz-4F and (E) Biph-8F.

Supplementary Figure 4. TGA curves of (A) SPPOF-4F and (B) SPPOF-8F under air atmosphere.

Supplementary Figure 5. Optical images of Contact Angle measurement for deionized water on the surfaces of (A) SPPOF-4F and (B) SPPOF-8F.

Supplementary Figure 6. Elemental distribution mapping images: (A) C for SPPOF-4F; (B) F for SPPOF-4F; (C) C for SPPOF-8F and (D) F for SPPOF-8F.

Supplementary Figure 7. Simulated model and the electrostatic potential maps of (A) SPPOF-4F@CF4, (B) SPPOF-4F@C₂F₆, (C) SPPOF-8F@CF₄ and (D) SPPOF-8F@C₂F₆.

Supplementary Figure 8. Comparison of FT-IR spectra of POFs before and after HCl or NaOH treatment: (A) SPPOF-4F and (B) SPPOF-8F.

Supplementary Tables

	Q _{st} for	Q _{st} for	C ₂ F ₆	CF ₄	Ratio of	
Adsorbents	C ₂ F ₆	CF ₄	uptake	uptake	uptake	Note
	(kJ/mol)	(kJ/mol)	(mmol/g)	(mmol/g)	(C ₂ F ₆ /CF ₄)	
SPPOF-4F	29.0	20.5	1.74	0.79	2.20	298 K, 1 bar
(This work)	29.0					
SPPOF-8F	28.5	11.4	1.83	0.71	2.58	298 K. 1 bar
(This work)						,
CS400 ^[1]	34.52	25.15	0.49	0.63	0.78	300 K, 1 bar
CS1000 ^[1]	40.69	31.45	0.33	0.41	0.80	300 K, 1 bar
CS1000a ^[1]	31.17	21.86	5.4	5.3	1.02	300 K, 1 bar
Al-Fum ^[2]	20.3	23.4	3.3	2.1	1.57	298 K, 1 bar
MOF-303 ^[2]	24.7	33.5	2.51	1.53	1.64	298 K, 1 bar
MIL-160 ^[2]	17.1	17.7	1.48	0.94	1.57	298 K, 1 bar
Zeolite 13X (8-12 mesh) ^[3]	14.0	24.4	1.55	0.75	2.07	303 K, 1 bar
Activated Carbon (20-40 mesh) ^[3]	20.6	19.4	1.26	0.75	1.68	303 K, 1 bar
Activated Carbon (12-20 mesh) ^[3]			1.21	0.68	1.78	303 K, 1 bar
Silica gel (30-60 mesh) ^[3]			0.50	0.14	3.57	303 K, 1 bar
H-cage ^[4]			0.62	0.39	1.59	273 K, 1 bar
HF-cage ^[4]			0.44	0.38	1.16	273 K, 1 bar
F-cage ^[4]	30.9	29.2	1.78	0.93	1.91	273 K, 1 bar

Supplementary Table 1. C₂F₆/CF₄ adsorption compared with literature

Supp	lementary	Table 2.	Mulliken	atomic	charges	distribution	in (C_2F_6
	•							

Mulliken atomic charges of C₂F₆

Atomia number Atom		Mulliken atomic charges (a.u.)					
Atomic number	Atom	C ₂ F ₆ alone	C ₂ F ₆ in SPPOF-4F	C ₂ F ₆ in SPPOF-8F			
	C1	0.8128	0.8276	0.8292			
F1 F2 F3 C1 F3 C2 F4 F5 F6	C2	0.8129	0.8305	0.8333			
	F1	-0.2709	-0.2727	-0.2777			
	F2	-0.2708	-0.2795	-0.2785			
	F3	-0.2711	-0.2786	-0.2824			
	F4	-0.2709	-0.2712	-0.2751			
	F5	-0.2708	-0.2773	-0.2798			
	F6	-0.2712	-0.2804	-0.2736			
Total atomic ch	arge	0	-0.0016	-0.0046			

Refenrences

[1] Peng X, Vicent-Luna, et al. Separation of CF₄/N₂, C₂F₆/N₂, and SF₆/N₂ mixtures in amorphous activated carbons using molecular simulations. *ACS Appl Mater Interfaces* 2020;12:20044-55. <u>https://doi.org/10.1021/acsami.0c01043</u>

[2] Zhu J, Hu J, et al. Aluminum-based metal organic frameworks for greenhouse gases CF₄ and C₂F₆ capture with excellent capacity and selectivity. *Sep Purif Technol* 2024;331:125614. <u>https://doi.org/10.1016/j.seppur.2023.125614</u>

[3] Ahn N, Kang S, et al. Adsorption isotherms of tetrafluoromethane and hexafluoroethane on various adsorbents. *J Chem Eng Data* 2006;51:451-6. https://doi.org/10.1021/je0503756

[4] Tian K, Elbert, S.M, Hu XY, et al. Highly selective adsorption of perfluorinated greenhouse gases by porous organic cages, *Adv Mater* 2022;34:2202290. <u>https://doi.org/10.1002/adma.202202290</u>