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Abstract
This paper proposes a novel method for the optimal tuning of set points for multiple-layered control system structure
widely seen in robotics and other complex industrial processes composed of a number of subsystems. The terminal
sliding mode control (SMC) is used as the low-level control strategy to ensure the stability of subsystems. When
uncertainties exist, it can be shown that the deteriorated system performance will be improved by the outer loop with
set points tuning. For this purpose, the learning of the new set point is designed to compensate for the effects caused
by uncertainties during the system operation. At the same time, the system is proven to stay with the original set
point when the compensation is introduced. A practical application to a holonomic mobile robot system is given to
illustrate the presented method. Desired results have been obtained.

Keywords: Set point reselection, mobile robot, terminal sliding mode control, hamilton–jacobi–bellman(HJB) equa-
tion

1. INTRODUCTION
Conventional optimal control has focused on improving system performance by optimizing controller param-
eters. As the development of control theory grows and the demand for industrial automation strengthens, con-
trollers are embedded in industrial equipment universally. However, change to controller parameters becomes
more difficult and costly as a result of universal use. Instead of changing controller parameters, system per-
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formance can also be improved by reselecting the set point [1–4]. This is particularly true for the multi-layered
operational structure of control systems widely seen in robotics and complex industrial processes. Such sys-
tems generally consist of two layers - one is the low-level control systems with a number of subsystems, and
the other is the operational control layer that generate set points to the subsystems so as to ensure a desired
overall system performance. The new set point is designed based on prior knowledge of the system structure.
The set point reselection method is achieved by using a cascade structure, which is widely used in complex
industrial control strategy design [5–7]. The inherent control loop is considered to be the inner loop, which
guarantees the system’s stability. Then system’s performance will be be improved by the outer loop.

Slidingmode control (SMC) is known for its outstanding robustness [8–15]. By choosing the proper slidingman-
ifold, a sliding mode controller is capable of guaranteeing system convergence. The chattering phenomenon
has long been a notable issue in the SMC design [16–18]. The high-frequency components will not only affect the
system response but also damage the actuators. To eliminate the chattering phenomenon, smooth functions,
such as the saturation function, are usually used in the SMC design [19]. However, when the sliding manifold
moves within the scope of a chosen linear portion, the amplifier from the saturation function slows the re-
sponse. In 2012, Polyakov pointed out a certain type of function [20] that guarantees a fast arrival with both
large and small variances. In the conventional SMC design, a fast response relies on a large control gain, which
is another incentive for the chattering issue. Instead of using a linear function, nonlinear sliding manifolds
give a more flexible response [21–24], but it is necessary to check if singular points exist in the system.

To overcome the above difficulties, in this work we focus on the tuning of the set-points to all the subsystems
in the considered multi-layered operational system structure. The idea is to tuning these set points so that
the system can still achieve the originally targeted performance when the system is subjected to unexpected
uncertainties.

Therefore the novelties and contributions are as follows:

(1) The system considered is of a multi-layered structure that consists of 1) subsystem layers which are low-
level control system, and 2) operational layer that generate set points to these subsystems by optimizing a global
system performance;

(2)The proposed method aims at achieving optimal tuning of the set-points so as to guarantee the original op-
timized performance when the system is subjected to unexpected uncertainties rather than ask the subsystems
to follow the newly updated set-points;

(3)Application to amobile robot system has beenmade - showing encouraging results in terms of performance
guarantee.

This paper is organized in the following sections. In Section 2, the discrete time kinematic system is described.
The inherent control strategy is terminal SMC. The stability of inner loops is also checked. This description
is followed by the augmented representation of the state variables and system uncertainties. An optimal outer
loop design is proposed in Section 3. Finally, the method proposed in this paper is tested on a holonomic
mobile robot in Section 4 to validate system dynamics and quantitatively compare the system’s performance
with and without an outer loop. Conclusions are given in section 5.

2. METHODS
Because most of the industrial processes are controlled by computers, discrete system dynamics are considered
in the design.
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2.1. System model
Consider the system described by the following expression:{

𝒙1,𝑘+1 = 𝒙1,𝑘 + ℎ𝒙2,𝑘 ,

𝒙2,𝑘+1 = 𝒙2,𝑘 + ℎ( 𝒇 𝑘 + 𝒈𝑘𝒖𝑘 ),
(1)

where ℎ is the system sampling interval, 𝒙𝑖,𝑘 = 𝒙𝑖 (𝑘ℎ), 𝒙𝑘 =
(
𝒙1,𝑘 𝒙2,𝑘

)𝑇
∈ R2𝑛 is the system states vector,

𝒇 𝑘 ∈ R𝑛 represents the nonlinear parts of the system, and 𝒈𝑘 ∈ R𝑛 is an invertible matrix, which represents
the relationships between control input 𝒖𝑘 and system states 𝒙𝑘 .

It can be seen that such system expression would represent a wide-range of dynamics systems in practice, and
examples are robotic systems and complicated industrial processes such as paper making, mineral processing,
chemnical plant and car manufacturing systems.

The errors between system states and a set point vector can be expressed as

𝒆1,𝑘 = 𝒙1,𝑘 − 𝒓∗𝑘 , (2)

where 𝒓∗𝑘 is the set point vector. Then,

𝒆1,𝑘+1 = 𝒙1,𝑘+1 − 𝒓∗𝑘+1. (3)

The difference between errors of 𝑘 + 1 and 𝑘 can be expressed as

𝒆1,𝑘+1 − 𝒆1,𝑘 = ℎ𝒙2,𝑘 − (𝒓∗𝑘+1 − 𝒓∗𝑘 ). (4)

In system expression Equation (1), 𝒆2,𝑘 describes the change from 𝒆1,𝑘 to 𝒆1,𝑘+1. Let

𝒆2,𝑘 = 𝒙2,𝑘 −
1
ℎ
(𝒓∗𝑘+1 − 𝒓∗𝑘 ). (5)

Then, the error dynamics can be written as
𝒆1,𝑘+1 =𝒆1,𝑘 + ℎ𝒆2,𝑘 ,

𝒆2,𝑘+1 =𝒆2,𝑘 + ℎ( 𝒇 𝑘 + 𝒈𝑘𝒖𝑘 ) +
1
ℎ
(−𝒓∗𝑘+2

+ 2𝒓∗𝑘+1 − 𝒓∗𝑘 ),

(6)

which is going to be used in the following control strategy design. In this context, the system in (1) represents
the subsystems in a multi-layered system operational structure. The set points grouped in the set point vector
is generated by the operational layer as shown in the following figure.

2.2. Terminal sSliding mode controller design
In this subection, we will focus on the control system design for subsystems represented bt equation (1). This
requires the selection of control input 𝒖𝑘 to ensure the tracking of the system state to the set point. For this
purpose, the well-known sliding mode control (SMC) strategy is used to guarantee the stability of the system.
Based on the contributionmade byMan et al. [25], to achieve the terminal convergence, the nonsingular sliding
manifold is defined as

𝒔𝒌 =

©­­­­­«
𝑠1,𝑘
𝑠2,𝑘
...

𝑠𝑛,𝑘

ª®®®®®¬
=

©­­­­­­­«

𝑒2,1,𝑘 + 𝛽1𝑒
𝑞1
𝑝1
1,1,𝑘

𝑒2,2,𝑘 + 𝛽2𝑒
𝑞2
𝑝2
1,2,𝑘

...

𝑒2,𝑛,𝑘 + 𝛽𝑛𝑒
𝑞𝑛
𝑝𝑛

1,𝑛,𝑘

ª®®®®®®®¬
, (7)
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Figure 1. Block diagram of two-layer control structure.

where 𝑠𝑖 is the 𝑖th sliding surface for the subsystem, 𝛽𝑖 ∈ R is a positive definite, 𝑝𝑖 and 𝑞𝑖 are positive definite
odd integers satisfying 𝑞𝑖

𝑝𝑖
∈ (1,∞), and 𝑒𝑖, 𝑗 ,𝑘 denotes the 𝑘th sample of the 𝑗 th component in the 𝑖th state. The

sliding manifold is a constraint to the system states, which drives the system’s states along a certain trajectory
to an origin point in finite time. System states move along the sliding manifold redproduced

𝑠𝑖,𝑘+1 = 𝑠𝑖,𝑘 = 0. (8)

Then, by combining Equation (7) and Equation (8) together, the equivalent control law to keep system states
on the sliding manifold (7) is given by

𝑢𝑖,𝑘 = − 𝑔−1
𝑖,𝑘 𝑓𝑖,𝑘 + 𝑔−1

𝑖,𝑘

1
ℎ
[𝛽𝑖𝑒

𝑞𝑖
𝑝𝑖

1,𝑖,𝑘 − 𝛽𝑖 (𝑒1,𝑖,𝑘

+ ℎ𝑒2,𝑖,𝑘 )
𝑞𝑖
𝑝𝑖 ] + 𝑔−1

𝑖,𝑘

1
ℎ2 (𝑟

∗
𝑖,𝑘+2 − 2𝑟∗𝑖,𝑘+1

+ 𝑟∗𝑖,𝑘 ),
(9)

where 𝑢𝑖,𝑘 represents the 𝑖th controller component based on the states value at the 𝑘th sampling time. However,
if a system’s initial values (𝑥0) are not placed on the manifold (𝒔𝑘 = 0), the controller shown in Equation (9)
cannot transport system states to the sliding manifold. Based on [26], the new controller is written as

𝑢𝑖,𝑘 = − 𝑔−1
𝑖,𝑘 𝑓𝑖,𝑘 + 𝑔−1

𝑖,𝑘

1
ℎ
[𝛽𝑖𝑒

𝑞𝑖
𝑝𝑖

1,𝑖,𝑘 − 𝛽𝑖 (𝑒1,𝑖,𝑘

+ ℎ𝑒2,𝑖,𝑘 )
𝑞𝑖
𝑝𝑖 ] + 𝑔−1

𝑖,𝑘

1
ℎ2 (𝑟

∗
𝑖,𝑘+2 − 2𝑟∗𝑖,𝑘+1

+ 𝑟∗𝑖,𝑘 ) − 𝑔−1
𝑖,𝑘

1
ℎ
(𝛼1,𝑖𝑠

𝑛1,𝑖
𝑚1,𝑖
𝑖,𝑘 + 𝛼2,𝑖𝑠

𝑛2,𝑖
𝑚2,𝑖
𝑖,𝑘 ),

(10)
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where 𝑚1,𝑖 , 𝑚2,𝑖 , 𝑛1,𝑖 , 𝑛2,𝑖 are positively defined odd integers that satisfy 𝑛1,𝑖
𝑚1,𝑖

∈ (0, 1) and 𝑛2,𝑖
𝑚2,𝑖

∈ (1,∞). When
the controller described in Equation (10) is implemented into the system, error dynamics change to

𝑒1,𝑖,𝑘+1 =𝑒1,𝑖,𝑘 + ℎ𝑒2,𝑖,𝑘 ,

𝑒2,𝑖,𝑘+1 =𝑒2,𝑖,𝑘 + 𝛽𝑖𝑒
𝑞𝑖
𝑝𝑖

1,𝑖,𝑘 − 𝛽𝑖 (𝑒1,𝑖,𝑘 + ℎ𝑒2,𝑖,𝑘 )
𝑞𝑖
𝑝𝑖

− (𝛼1,𝑖𝑠

𝑛1,𝑖
𝑚1,𝑖
𝑖,𝑘 + 𝛼2,𝑖𝑠

𝑛2,𝑖
𝑚2,𝑖
𝑖,𝑘 ).

(11)

To prove the stability of the inner closed-loop system (i.e., the subsystems), the convergence of system states
must be analyzed. This is summarized in the following lemma.

Lemma 1 For the error dynamics shown in Equation (6), if the controller is designed as

𝑢𝑖,𝑘 = − 𝑔−1
𝑖,𝑘 𝑓𝑖,𝑘 + 𝑔−1

𝑖,𝑘

1
ℎ
[𝛽𝑖𝑒

𝑞𝑖
𝑝𝑖

1,𝑖,𝑘 − 𝛽𝑖 (𝑒1,𝑖,𝑘

+ ℎ𝑒2,𝑖,𝑘 )
𝑞𝑖
𝑝𝑖 ] + 𝑔−1

𝑖,𝑘

1
ℎ2 (𝑟

∗
𝑖,𝑘+2 − 2𝑟∗𝑖,𝑘+1

+ 𝑟∗𝑖,𝑘 ) − 𝑔−1
𝑖,𝑘

1
ℎ
(𝛼1,𝑖𝑠

𝑛1,𝑖
𝑚1,𝑖
𝑖,𝑘 + 𝛼2,𝑖𝑠

𝑛2,𝑖
𝑚2,𝑖
𝑖,𝑘 ),

(12)

where 𝑚1,𝑖 , 𝑚2,𝑖 , 𝑛1,𝑖 , 𝑛2,𝑖 are positive definite odd integers that satisfy 𝑛1,𝑖
𝑚1,𝑖

∈ (0, 1) and 𝑛2,𝑖
𝑚2,𝑖

∈ (1,∞), then the
system state will converge to zero within a finite time.

Proof 1 By using the sliding manifold described in Equation (7), system states go along the sliding manifold (𝑠𝑖 =
0), and when they arrive at it,

𝑠𝑖,𝑘+1 = 𝑠𝑖,𝑘 = 0. (13)

However, the system states are not always on the manifold. To make the sliding manifold an attractor, the system
statesmust be ensured tomove toward themanifoldwhen the system states are outside the slidingmanifold (𝑠𝑖 ≠ 0),
which means that

𝑠𝑖,𝑘 (𝑠𝑖,𝑘+1 − 𝑠𝑖,𝑘 ) < 0. (14)

If it can be proved that (𝑠𝑖,𝑘+1 − 𝑠𝑖,𝑘 ) has an opposite sign to the sliding manifold (𝑠𝑖,𝑘 ), then system stability can
be proved. Combining the sliding manifold with Equation (14),

𝑠𝑖,𝑘 (𝑠𝑖,𝑘+1 − 𝑠𝑖,𝑘 )

=(𝑒2,𝑖,𝑘+1 + 𝛽𝑖𝑒
𝑞𝑖
𝑝𝑖

1,𝑖,𝑘+1 − 𝑒2,𝑖,𝑘 − 𝛽𝑖𝑒
𝑞𝑖
𝑝𝑖

1,𝑖,𝑘 )𝑠𝑖,𝑘

=[𝑒2,𝑖,𝑘 + 𝛽𝑖𝑒
𝑞𝑖
𝑝𝑖

1,𝑖,𝑘 − 𝛽𝑖 (𝑒1,𝑖,𝑘 + ℎ𝑒2,𝑖,𝑘 )
𝑞𝑖
𝑝𝑖

− (𝛼1,𝑖𝑠

𝑛1,𝑖
𝑚1,𝑖
𝑖,𝑘 + 𝛼2,𝑖𝑠

𝑛2,𝑖
𝑚2,𝑖
𝑖,𝑘 ) + 𝛽𝑖 (𝑒1,𝑖,𝑘

+ ℎ𝑒2,𝑖,𝑘 )
𝑞𝑖
𝑝𝑖 − 𝑒2,𝑖,𝑘 − 𝛽𝑖𝑒

𝑞𝑖
𝑝𝑖

1,𝑖,𝑘 ]𝑠𝑖,𝑘

= − (𝛼1,𝑖𝑠

𝑛1,𝑖
𝑚1,𝑖

+1

𝑖,𝑘 + 𝛼2,𝑖𝑠

𝑛2,𝑖
𝑚2,𝑖

+1

𝑖,𝑘 ).

(15)

As described previously, 𝑚1, 𝑚2, 𝑛1, and 𝑛2 are positive definite odd integers, which guarantees the numerators
of 𝑛 𝑗 ,𝑖

𝑚 𝑗 ,𝑖
+ 1 are even. An even power,(𝑛 𝑗 ,𝑖 + 𝑚 𝑗 ,𝑖), will erase the sign. 𝛼1,𝑖 and 𝛼2,𝑖 are also positive definite real

numbers. The derivative of the Lyapunov candidate presented here is less than zero as long as 𝑠𝑖,𝑘 ≠ 0; so,

𝑠𝑖,𝑘 (𝑠𝑖,𝑘+1 − 𝑠𝑖,𝑘 ) ≤ 0. (16)

Zero is the locally stable equilibrium point of the system. Basing on these results, |𝑠𝑖,𝑘+1 | < |𝑠𝑖,𝑘 | when |𝑠𝑖,𝑘 | ≠ 0,
and 𝑠 → 0 when 𝑡 → 0. Then,

𝑒2,𝑖,𝑘 = −𝛽𝑖𝑒
𝑞1
𝑝1
1,𝑖,𝑘 . (17)

The system is globally asymptotically stable.
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2.3. Set point reselection method
2.3.1. System model with distribution
The system dynamics with uncertainties are{

𝒙1,𝑘+1 = 𝒙1,𝑘 + ℎ𝒙2,𝑘 + 𝒅1,

𝒙2,𝑘+1 = 𝒙2,𝑘 + ℎ( 𝒇 𝑘 + 𝒈𝑘𝒖𝑘 ) + 𝒅2,
(18)

where 𝒅1 and 𝒅2 are uncertainties in the system. To improve the performance of the system, an additional
reselected set point vector 𝚫𝒓𝜁 is introduced. The new reference signal is

𝒓𝑘 = 𝚫𝒓𝜁 + 𝒓∗𝑘 , (19)

where 𝒓∗𝑘 is the origin reference vector that system states want to track, 𝚫𝒓 is the new compensatory set point
to be designed, and (•)𝜁 shows a different sampling rate with the system states. Because of the introduction of
a new set point vector, some new vectors need to be defined to emphasize the difference between new states
error and the one used in Section 2. {

𝜺1,𝑘 = 𝒙1,𝑘 − 𝒓𝑘

𝜺2,𝑘 = 𝒙2,𝑘 − 1
ℎ (𝒓𝑘+1 − 𝒓𝑘 ).

(20)

Based on the new vectors defined above, system dynamics change to
𝜺1,𝑘+1 =𝜺1,𝑘 + ℎ𝜺2,𝑘 + 𝒅1,

𝜺2,𝑘+1 =𝜺2,𝑘 + ℎ( 𝒇 𝑘 + 𝒈𝑘 𝒖̂𝑘 ) +
1
ℎ
(−𝒓𝑘+2

+ 2𝒓𝑘+1 − 𝒓𝑘 ) + 𝒅2,

, (21)

where 𝜺 =
(
𝜺1 𝜺2

)𝑇
is the new state of the error dynamics. 𝑢̂ is used to represent the controller based on the

new error dynamics described in Equation (26). ℎ is the length of the system states’ sampling interval. Based
on the error dynamics described in Equation (26), controller (𝑢̂𝑖,𝑘 ) is expressed as

𝑢̂𝑖,𝑘 = − 𝑔−1
𝑖,𝑘 𝑓𝑖,𝑘 + 𝑔−1

𝑖,𝑘

1
ℎ
[𝛽𝑖𝜀

𝑞𝑖
𝑝𝑖

1,𝑖,𝑘 − 𝛽𝑖 (𝜀1,𝑖,𝑘

+ ℎ𝜀2,𝑖,𝑘 )
𝑞𝑖
𝑝𝑖 ] + 𝑔−1

𝑖,𝑘

1
ℎ2 (𝑟

∗
𝑖,𝑘+2 − 2𝑟∗𝑖,𝑘+1

+ 𝑟∗𝑖,𝑘 ) − 𝑔−1
𝑖,𝑘

1
ℎ
(𝛼1,𝑖𝑠

𝑛1,𝑖
𝑚1,𝑖
𝑖,𝑘 + 𝛼2,𝑖𝑠

𝑛2,𝑖
𝑚2,𝑖
𝑖,𝑘 ),

(22)

where 𝑠𝑖,𝑘 = 𝜀2,𝑖,𝑘 + 𝛽𝑖𝜀
𝑞𝑖
𝑝𝑖

1,𝑖,𝑘 is the sliding manifold related to the new system state vector 𝜺. 𝑓𝑖,𝑘 = 𝑓𝑖 (𝜺𝑘 ) and
𝜀 𝑗 ,𝑖,𝑘 = 𝜀 𝑗 ,𝑖 (𝑘ℎ). Similar to the previous steps, by combining system dynamics described in Equation (27) and
controller 𝑢̂𝑖,𝑘 , the system dynamics become

𝜺1,𝑘+1 =𝜺1,𝑘 + ℎ𝜺2,𝑘 + 𝒅1

𝜺2,𝑘+1 =𝜺2,𝑘 + 𝛽𝜀
𝑞
𝑝

1,𝑘 − 𝛽(𝜀1,𝑘 + ℎ𝜀2,𝑘 )
𝑞
𝑝 + 𝒅2

+ 1
ℎ
(−Δ𝑟𝑘+2 + Δ2𝑟𝑘+1 − Δ𝑟𝑘 ).

(23)

2.4. System performance optimization
This section details a new method of selecting an alternative set point to improve the system performance. In
this context, the system model with disturbances will be presented first. This is then followed by the proposed
method on the set point tuning that guarantees the achievement of the originally targeted system performance.
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2.4.1. System model with distribution
The system dynamics with uncertainties or disturbances can be expressed by adding extra terms in equation
(1) as follows. {

𝒙1,𝑘+1 = 𝒙1,𝑘 + ℎ𝒙2,𝑘 + 𝒅1,

𝒙2,𝑘+1 = 𝒙2,𝑘 + ℎ( 𝒇 𝑘 + 𝒈𝑘𝒖𝑘 ) + 𝒅2,
(24)

where 𝒅1 and 𝒅2 are uncertainties or disturbances in the system.

To maintain and improve the performance of the system when the system is subjected to uncertainties and
disturbances, we propose to tune the set points rather than changing the control parameters. For this purpose,
an additionally reselected set point vector 𝚫𝒓𝜁 is introduced. The means that new set point vector should be
of the following form

𝒓𝑘 = 𝚫𝒓𝜁 + 𝒓∗𝑘 , (25)

where 𝒓∗𝑘 is the original reference vector that system states want to track, 𝚫𝒓 is the new compensatory set point
to be designed as an additional term onto the original set point vector, and (•)𝜁 shows a different sampling
rate with the system states. Because of the introduction of a new set point vector, some new vectors need to
be defined to emphasize the difference between error from new states and the one used in Section 2.{

𝜺1,𝑘 = 𝒙1,𝑘 − 𝒓𝑘

𝜺2,𝑘 = 𝒙2,𝑘 − 1
ℎ (𝒓𝑘+1 − 𝒓𝑘 ).

(26)

Based on the new vectors defined previously, system dynamics change to
𝜺1,𝑘+1 =𝜺1,𝑘 + ℎ𝜺2,𝑘 + 𝒅1,

𝜺2,𝑘+1 =𝜺2,𝑘 + ℎ( 𝒇 𝑘 + 𝒈𝑘 𝒖̂𝑘 ) +
1
ℎ
(−𝒓𝑘+2

+ 2𝒓𝑘+1 − 𝒓𝑘 ) + 𝒅2,

, (27)

where 𝜺 =
(
𝜺1 𝜺2

)𝑇
is the new state of the error dynamics, 𝑢̂ is used to represent the controller based on

the new error dynamics described in Equation (26), and ℎ is the length of the system states sampling interval.
Based on the error dynamics described in Equation (26), controller (𝑢̂𝑖,𝑘 ) is expressed as

𝑢̂𝑖,𝑘 = − 𝑔−1
𝑖,𝑘 𝑓𝑖,𝑘 + 𝑔−1

𝑖,𝑘

1
ℎ
[𝛽𝑖𝜀

𝑞𝑖
𝑝𝑖

1,𝑖,𝑘 − 𝛽𝑖 (𝜀1,𝑖,𝑘

+ ℎ𝜀2,𝑖,𝑘 )
𝑞𝑖
𝑝𝑖 ] + 𝑔−1

𝑖,𝑘

1
ℎ2 (𝑟

∗
𝑖,𝑘+2 − 2𝑟∗𝑖,𝑘+1

+ 𝑟∗𝑖,𝑘 ) − 𝑔−1
𝑖,𝑘

1
ℎ
(𝛼1,𝑖𝑠

𝑛1,𝑖
𝑚1,𝑖
𝑖,𝑘 + 𝛼2,𝑖𝑠

𝑛2,𝑖
𝑚2,𝑖
𝑖,𝑘 ),

(28)

where 𝑠𝑖,𝑘 = 𝜀2,𝑖,𝑘 + 𝛽𝑖𝜀
𝑞𝑖
𝑝𝑖

1,𝑖,𝑘 is the sliding manifold related to the new system state vector 𝜺, 𝑓𝑖,𝑘 = 𝑓𝑖 (𝜺𝑘 ), and
𝜀 𝑗 ,𝑖,𝑘 = 𝜀 𝑗 ,𝑖 (𝑘ℎ). Similar to the previous steps, by combining system dynamics described in Equation (27) and
controller 𝑢̂𝑖,𝑘 , the system dynamics become

𝜺1,𝑘+1 =𝜺1,𝑘 + ℎ𝜺2,𝑘 + 𝒅1

𝜺2,𝑘+1 =𝜺2,𝑘 + 𝛽𝜀
𝑞
𝑝

1,𝑘 − 𝛽(𝜀1,𝑘 + ℎ𝜀2,𝑘 )
𝑞
𝑝 + 𝒅2

+ 1
ℎ
(−Δ𝑟𝑘+2 + Δ2𝑟𝑘+1 − Δ𝑟𝑘 ).

(29)

2.4.2. Performance optimization
To eliminate the effect of uncertainties, a new compensatory set point is designed in this section. Since the
objective is still to ensure that all the subsystems can track their original set points when the system is subjected
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to uncertainties or disturbances, the following performance function is used.

𝐽 = 𝒆𝑇1,𝑁𝑒1,𝑁 +
𝑁−1∑
𝜁=0

𝒆𝑇1,𝜁 𝒆1,𝜁 , (30)

where 𝑁 is the bound of sampling times. The performance index previously chosen tries to guarantee the
minimum position error between the robot and inherent set point 𝒓∗. The outer loop is designed based on this
performance index, where the idea is to select 𝚫𝒓 so that 𝐽 is minimized. Based on the chosen performance
index, the Hamiltonian becomes

𝐻𝜁 =𝒆𝑇1,𝜁 𝒆1,𝜁 + 𝝀𝑇𝜁+1(
𝜺1,𝜁 +ℎ𝜺2,𝜁 +𝒅1

𝜺2,𝜁 +ℎ( 𝒇 𝜁 +𝒈𝜁 𝒖̂𝜁 )+𝒅2
)

=
𝑛∑
𝑖=1

{𝜀2
1,𝑖,𝜁 + 2𝜀1,𝑖,𝜁Δ𝑟𝑖,𝜁 + Δ2𝑟𝑖,𝜁

+ 𝜆1,𝑖,𝜁+1(𝜀1,𝑖,𝜁 + ℎ𝜀2,𝑖,𝜁 + 𝑑1)

+ 𝜆2,𝑖,𝜁+1 [𝜀2,𝑖,𝜁 + 𝛽𝑖𝜀
𝑞𝑖
𝑝𝑖

1,𝑖,𝜁 − 𝛽𝑖 (𝜀1,𝑖,𝜁

+ ℎ𝜀2,𝑖,𝜁 )
𝑞𝑖
𝑝𝑖 − (𝛼1,𝑖𝑠

𝑛1,𝑖
𝑚1,𝑖
𝑖,𝜁 + 𝛼2,𝑖𝑠

𝑛2,𝑖
𝑚2,𝑖
𝑖,𝜁 )

− 1
ℎ
(Δ𝑟𝑖,𝜁+2 − 2Δ𝑟𝑖,𝜁+1 + Δ𝑟𝑖,𝜁 ) + 𝑑2]},

(31)

where 𝝀 ∈ R2×𝑛 is the costate.

Remark 1 Because of themulti-ratemethod used in the design, more than one sampling period of system states((•)𝑘 )
may arrive during the sampling period of a reselected set point ((•)𝜁 ). If the reselected set point remains the same
during the period considered in the Hamilton equation (Δ𝑟𝑖,𝑘+2 = Δ𝑟𝑖,𝑘+1 = Δ𝑟𝑖,𝑘 ), the reselected set point is unre-
lated to the system states during this period. In the Hamilton equation,Δ𝑟𝑖,𝜁 takes the place of Δ𝑟𝑖,𝑘 to make sure
the new strategy is sensitive to the change of system state.

The basic idea of the Hamilton equation is to find the minimum value by using the partial derivative related to
the performance index. To get the dynamics of the cost function, the partial derivative of each state is needed.

𝜆1,𝑖,𝜁 =
𝜕𝐻𝜁

𝜕𝜀1,𝑖,𝜁

=𝜆2,𝑖,𝜁+1 [𝛽𝑖
𝑞𝑖
𝑝𝑖
𝜀

𝑞𝑖
𝑝𝑖
−1

1,𝑖,𝜁 − 𝛽𝑖
𝑞𝑖
𝑝𝑖
(𝜀1,𝑖,𝜁

+ ℎ𝜀2,𝑖,𝜁 )
𝑞𝑖
𝑝𝑖
−1 − (𝛼1,𝑖

𝑛1,𝑖

𝑚1,𝑖
𝑠

𝑛1,𝑖
𝑚1,𝑖

−1

𝑖,𝜁

+ 𝛼2,𝑖
𝑛2,𝑖

𝑚2,𝑖
𝑠

𝑛2,𝑖
𝑚2,𝑖

−1

𝑖,𝜁 )𝛽𝑖
𝑞𝑖
𝑝𝑖
𝜀

𝑞𝑖
𝑝𝑖
−1

1,𝑖,𝜁 ]

+ 2𝜀1,𝑖,𝜁 + 2Δ𝑟𝑖,𝜁 + 𝜆1,𝑖,𝜁+1,

𝜆2,𝑖,𝜁 =
𝜕𝐻𝜁

𝜕𝜀2,𝑖,𝜁

=𝜆1,𝑖,𝜁+1ℎ + 𝜆2,𝑖,𝜁+1 [1 − 𝛽𝑖ℎ
𝑞𝑖
𝑝𝑖
(𝜀1,𝑖,𝜁

+ ℎ𝜀2,𝑖,𝜁 )
𝑞𝑖
𝑝𝑖
−1 − (𝛼1,𝑖

𝑛1

𝑚1
𝑠

𝑛1,𝑖
𝑚1,𝑖

−1

𝑖,𝜁

+ 𝛼2,𝑖
𝑛2,𝑖

𝑚2,𝑖
𝑠

𝑛2,𝑖
𝑚2,𝑖

−1

𝑖,𝜁 )] .

(32)
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Tomake sure that theHamilton equation has an extremum, Δ𝑟𝑖 needs to satisfy the stationary condition, which
is

0 =
𝜕𝐻𝜁

𝜕Δ𝑟𝑖,𝜁

= 2𝜀1,𝑖,𝜁 + 2Δ𝑟𝑖,𝜁 −
1
ℎ
𝜆2,𝑖,𝜁+1.

(33)

Owing to the nonlinear controller expression used in this equation, it is necessary to check if singular points
exist in the Hamilton equation is necessary. This is described in the following subsection.

2.4.3. Singular problem analysis

Because the component that relates to 𝑠

𝑛2,𝑖
𝑚2,𝑖

−1

𝑖,𝜁 appears in costate dynamics and the parameter selections 𝑛1
𝑚1

∈
(0, 1), the singular problem has to be considered when 𝜀1 = 0 and when the system states arrive at the surface.
To solve the singular problem, a new coefficient is introduced. [27]

𝜇𝑖,𝜁 =

sin( 𝜋2
|𝑠

1−
𝑛1,𝑖
𝑚1,𝑖

𝑖,𝜁 |
𝜏 ) if |𝑠

1− 𝑛1,𝑖
𝑚1,𝑖

𝑖,𝜁 | ≤ 𝜏

1 otherwise
, (34)

where 𝜏 is the enclosing scope of the sinusoidal function, and 𝜏 ≪ 1. When 𝑠𝑖,𝜁 → 0, 𝜇𝑖,𝜁 𝑠
𝑛1,𝑖
𝑚1,𝑖

−1

𝑖,𝜁 → 1.
After introducing the new coefficient, the costates dynamics change into

𝜆1,𝑖,𝜁 =
𝜕𝐻𝜁

𝜕𝜀1,𝑖,𝜁

=𝜆2,𝑖,𝜁+1 [𝛽𝑖
𝑞𝑖
𝑝𝑖
𝜀

𝑞𝑖
𝑝𝑖
−1

1,𝑖,𝜁 − 𝛽𝑖
𝑞𝑖
𝑝𝑖
(𝜀1,𝑖,𝜁

+ ℎ𝜀2,𝑖,𝜁 )
𝑞𝑖
𝑝𝑖
−1 − (𝛼1,𝑖

𝑛1,𝑖

𝑚1,𝑖
𝜇𝑖,𝜁 𝑠

𝑛1,𝑖
𝑚1,𝑖

−1

𝑖,𝜁

+ 𝛼2,𝑖
𝑛2,𝑖

𝑚2,𝑖
𝑠

𝑛2,𝑖
𝑚2,𝑖

−1

𝑖,𝜁 )𝛽𝑖
𝑞𝑖
𝑝𝑖
𝜀

𝑞𝑖
𝑝𝑖
−1

1,𝑖,𝜁 ]

+ 2𝜀1,𝑖,𝜁 + 2Δ𝑟𝑖,𝜁 + 𝜆1,𝑖,𝜁+1,

𝜆2,𝑖,𝜁 =
𝜕𝐻𝜁

𝜕𝜀2,𝑖,𝜁

=𝜆2,𝑖,𝜁+1 [1 − 𝛽𝑖ℎ
𝑞𝑖
𝑝𝑖
(𝜀1,𝑖,𝜁 + ℎ𝜀2,𝑖,𝜁 )

𝑞𝑖
𝑝𝑖
−1

− (𝛼1,𝑖
𝑛1,𝑖

𝑚1,𝑖
𝜇𝑖,𝜁 𝑠

𝑛1,𝑖
𝑚1,𝑖

−1

𝑖,𝜁 + 𝛼2,𝑖
𝑛2,𝑖

𝑚2,𝑖
𝑠

𝑛2,𝑖
𝑚2,𝑖

−1

𝑖,𝜁 )]

+ 𝜆1,𝑖,𝜁+1ℎ.

(35)

The reselected set point is

Δ𝑟𝑖,𝜁 = −𝜀1,𝑖,𝜁 +
1
2ℎ

𝜆2,𝑖,𝜁+1. (36)

The above equation gives the tuning of the set point vector when the uncertainties or disturbances exist. It is
also a feedback control for the outer loop of the system shown in Fig. 1. This differs from the most existing
methods where the optimization was performed for the tuning of control parameters in the low-level control
systems.

Remark 2 It is possible to avoid the singular problem by choosing some other method to use in the design of the
arriving part of the sliding mode controller. The singular problem is considered in this paper to provide a more
adaptable solution.
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Theorem 1 Suppose that the system (6) with the controller shown in Equation (28) experiences uncertainties
denoted by 𝒅1 and 𝒅2. Then, under the reselected set point 𝚫𝒓𝜁 , the performance index described in Equation (30)
will be optimized, and system states will also track the original set point 𝒓∗.

Proof 2 Because the set point update law was introduced, 𝒓𝜁 = 𝒓∗𝜁 + 𝚫𝒓𝜁 , where 𝚫𝒓𝜁 is shown in Equation (36).
With the uncertainties, control inputs change from 𝒆 to 𝜺. Because the changes are in the set point, the SMC
controller can guarantee the stability of the system. If the convergence of 𝜺 to 𝒆 can be proved, then the system
states will track 𝒓∗.

By combining Equation (35) and Equation (36), the relationships between costates are{
𝜆1,𝑖,𝜁+1 =𝜆1,𝑖,𝜁 − 𝐴𝜆2,𝑖,𝜁+1,

𝜆2,𝑖,𝜁+1 =𝜆2,𝑖,𝜁 − 𝜆1,𝑖,𝜁+1ℎ + 𝐵𝜆2,𝑖,𝜁+1,
(37)

where
𝐴 =

1
ℎ
− 𝛽𝑖

𝑞𝑖
𝑝𝑖
𝜀

𝑞𝑖
𝑝𝑖
−1

1,𝑖,𝜁 + 𝛽𝑖
𝑞𝑖
𝑝𝑖
(𝜀1,𝑖,𝜁 + ℎ𝜀2,𝑖,𝜁 )

𝑞𝑖
𝑝𝑖
−1

+ (𝛼1,𝑖
𝑛1,𝑖

𝑚1,𝑖
𝜇𝑖,𝜁 𝑠

𝑛1,𝑖
𝑚1,𝑖

−1

𝑖,𝜁

+ 𝛼2,𝑖
𝑛2,𝑖

𝑚2,𝑖
𝑠

𝑛2,𝑖
𝑚2,𝑖

−1

𝑖,𝜁 )𝛽𝑖
𝑞𝑖
𝑝𝑖
𝜀

𝑞𝑖
𝑝𝑖
−1

1,𝑖,𝜁 ],

(38)

and
𝐵 =𝛽𝑖ℎ

𝑞𝑖
𝑝𝑖
(𝜀1,𝑖,𝜁 + ℎ𝜀2,𝑖,𝜁 )

𝑞𝑖
𝑝𝑖
−1

+ (𝛼1,𝑖
𝑛1,𝑖

𝑚1,𝑖
𝜇𝑖,𝜁 𝑠

𝑛1,𝑖
𝑚1,𝑖

−1

𝑖,𝜁 + 𝛼2,𝑖
𝑛2,𝑖

𝑚2,𝑖
𝑠

𝑛2
𝑚2

−1
𝑖,𝜁 ).

(39)

If the system has equilibrium points, then system states will remain at one of the equilibrium points at the end.
Assume the system described in Equation (37) has equilibrium points. Based on the properties of equilibrium
points,

𝝀𝑖,𝜁 = 𝝀𝑖,𝜁+1. (40)

Combining with Equation (37) produces{
0 = 𝑨𝝀2,𝑖,𝜁+1

0 = −𝝀1,𝑖,𝜁+1ℎ + 𝑩𝝀2,𝑖,𝜁+1.
(41)

If 𝑨𝝀2,𝑖,𝜁+1 = 0 is satisfied, either 𝑨 or 𝝀2,𝑖,𝜁+1 should be zero. When 𝑨 = 0 and 𝜺𝑖,𝜁 ≠ 0, the costate equation
has an equilibrium point. However, when the sliding mode controller is applied to the system, 𝜺𝑖,𝜁 ≠ 0 is not an
equilibrium point for the system. According to Equation (38), a constant 1

ℎ exists in 𝑨, which means if 𝑨 = 0 is
desired, the system states have to compensate for the constant.

Based on Equation (37), if 𝝀2,𝜁+1 = 0, the system will stay at 𝝀𝑖,𝜁+1 = 0.
When 𝝀 = 0, 

0 =𝒙1,𝑖,𝜁 − 𝒓∗𝑖,𝜁

0 =𝒙2,𝑖,𝜁 −
1
ℎ
(𝒓∗𝜁+1 − 𝒓∗𝜁 ).

(42)

This equation shows that 𝒙 → 𝒓∗.

Remark 3 The structure in Figure 1 is generic in the sense that many industrial systems have exhibited such a
multiple-layered structure [28,29] in their operations, where the top-layer generates the optimized set-points and the
lower-layer consists of a number of closed loop tracking systems. This indicates that the method described above
can be readily applied to a wide-range of complex systems.
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Figure 2. Robotino mobile robot.

The procedures of the algorithm design and implementation in practice is given in the following.

• Step 1: Design the paths based upon the destinations for the actuators. The path used in this paper is
a direct line. As the hardware structure of Robotino is stated, the motion is factorized in the X and Y
direction, whilst with the rotation in the Z direction;

• Step 2: Design the controller with the MCU in the actuators as the SMC described in this paper. This is for
the actuators to guarantee the stability of the whole motion system;

• Step 3: Add/simulate faults in the system. Indeed, faults can be added in any loop such as the position,
velocity or current loops. Faults used in this paper are sinusoidal functions added in position and velocity
loops.

• Step 4: Record the reading from the encoders as the input for optimization;
• Step 5: Run the optimal algorithm with the encoder reading to obtain the re-selection of the set-points
array, then add the array to the designed path. In this phase the limited computing resource of Robotino
has to be considered. The optimal algorithm are therefore executed in a PC instead of the MCU in the
Robot;

• Step 6: Repeat Step 3 to Step 5 until the system operational performance reaches its expectation.

3. RESULTS
With increasing interest in industrial automation, mobile robots have been playing an important role in trans-
portation, rescue, and other fields. Mobile robots always work in complex situations in which uncertainties
are inevitable. Most of those applications rely on accurate information about the robot’s location; however, the
original controller may not be able to guarantee that accuracy when uncertainties occur.

The Robotino mobile robot in Figure 2 was used in this experiment. The programming environment was
Ubuntu Linux. The Robotino is a holonomic mobile robot in 2D. The wheels were driven by direct current
(DC)motors. Figure 3 shows the block diagramof the inner closed-loop design of the Robotino. The trajectory
planning agency generated the set points based on the requirements. The control signals were passed to the
Robotino through its inherent WLAN-Link. The embedded system in the Robotino transferred the velocity
setting values into torques. To guarantee the primary stability of the mobile robot, the Robotino had a PI
controller inside.
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Figure 3. Block diagram of Robotino control.

To demonstrate this method, the sliding manifold picked for 𝑥 and 𝑦 was

𝑠 = 𝑣 + 2𝑝
11
9 , (43)

where 𝑣 represents the velocity, and 𝑝 is the position feedback from encoders. To make sure that the Robotino
could be initialled at any position,

𝑢𝑎 = −(0.02𝑠
9
11 + 0.05𝑠

11
9 ). (44)

The performance index used in this study is

𝐽 = 𝒆𝑇1,𝑁 𝒆1,𝑁 +
𝑁−1∑
𝑘=0

𝒆𝑇1,𝑘 𝒆1,𝑘 . (45)

Figure 4 and Figure 5 are system state errors. Encoder faults were added onto the controller inputs. The
controller’s inputs that were affected by faults are represented by solid curves. The figures also show that
when the system worked without the optimal loop, the robot’s stability was still guaranteed. According to the
hardware structure and programming logic, the optimized control signal may not have been able to follow
the system if their sampling frequencies remained the same. The multirate sampling method was used in this
experiment. Dotted curves represent the resampled signals. The sampling frequency of the resampled signal
was one-tenth of the system’s clocking frequency.

Velocities of themobile in each direction are shown in Figures 6 and 7. The resampled velocities are represented
with dotted curves.

Figure 8 and Figure 9 are the comparisons of optimized and original position errors relating to 𝑟∗ and 𝑟 . From
the figures, the reselected set points increased the feedback error at the beginning, which offered a faster re-
sponse. Δ𝑟 also decreased the steady errors, and the reselected set point did not affect the original set point
tracking. The mobile robot not only had a faster response but also improved accuracy. Figure 10 is the per-
formance index of the mobile robot. The performance index with the reselected set point was better than the
original one.
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Figure 4. Sampled position error in 𝑥 direction.

Figure 5. Sampled position error in 𝑦 direction.

On the other hand, it can be seen that the possible comparison can be made. However, this would mean that
we need to compare the results of the set point resection with respect to the case when the set point are not
tuned at all regardless of the presence of uncertainties. As the proposed algorithm is an optimization based
design. It is believed that the set point tuning would generally produce a better result in terms of minimizing
the impact of the uncertainties.

4. CONCLUSIONS
In this paper, a novel set point reselection method was proposed. A sliding mode controller was applied onto
the inner loop as the basic controller, which guaranteed the system stability. To eliminate the effects of uncer-
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Figure 6. Sampled velocity in 𝑥 direction.

Figure 7. Sampled velocity in 𝑦 direction.

tainties, the outer loop was designed based on the Hamilton equation used in the optimality principle, which
focused on optimizing the chosen system performance index. However, as the nonlinear sliding manifold was
introduced, the singular problem existed in the Hamilton equation. To solve the singular problem, an extra
sine function was added to the Hamilton equation. The singular problem could also be avoided by carefully
choosing the value of the parameters in the sliding manifold. To show a more general result, singular problem
was still considered in this paper. Because the new set point may have changed the stability of this system, the
convergence to 𝑒 was proved. The proposed algorithm has been applied to a mobile robot and encouraging
results have been obtained.

The system considered in this paper is assumed having known dynamics for 𝑓𝑘 and 𝑔𝑘 . However, in practice
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Figure 8. Optimal system output error (𝑒𝑥).

Figure 9. Optimal system output error (𝑒𝑦).
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Figure 10. System performance index.

there are many systems of which their dynamics would be subjected to unknown changes in operation envi-
ronment and other unpredictable factors. As a result, for the future work, we need to consider the adaptive
control as well where the model parameters and system dynamics will be learnt using data-driven approaches
such as neural networks to estimate dynamics 𝑓𝑘 and 𝑔𝑘 in equation 1), This would lead to an extra adaptive
tuning loop for the closed loop system as shown in Figure 1.
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