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Abstract
Low density lipoproteins (LDL) reduction remains the key goal for reducing the risk of atherosclerotic 
cardiovascular diseases (CVD) in people with high residual risk and metabolic complications including liver 
disease. Notwithstanding, epidemiological projections support a key role of liver-derived apolipoprotein B (ApoB) 
containing lipoproteins, namely very low density lipoproteins (VLDL) and their “remnants” (TG), undergoing the 
activity of lipases, in eliciting atherosclerotic inflammatory sequelae of a comparable order of magnitude to that of 
LDL. Disparate experimental evidence supports that triglycerides (TG), residual cholesterol content, or the large 
apolipoprotein set on the surface of these lipoproteins can elicit a number of plausible immune-inflammatory 
mechanisms that foster the vascular atherosclerotic process. Therapeutic options that convincingly lowered the 
plasma levels of liver-derived ApoB containing lipoproteins, either by reducing the hepatic synthesis or by 
improving the peripheral lipolysis of the lipid content, did not exert robust CVD risk reduction, and the effect on 
inflammation was questionable. Understanding the mechanisms linking liver-derived lipoproteins with chronic 
inflammation will provide pathophysiological insights for the identification of new therapeutic targets for people at 
high CVD risk and with metabolic complications. In this perspective, this topic is of immediate interest for the 
prevention of CVD in patients affected by non-alcoholic fatty liver disease (NAFLD) and, even more, for NAFLD 
patients with diabetes, insulin resistance, or other comorbidities (metabolic-associated fatty liver disease). This 
review resumes the principal physio-pathological insights regarding the metabolism of liver-derived lipoproteins 
and provides an update on the current pharmacological options that can be considered for improving CVD 

https://creativecommons.org/licenses/by/4.0/
https://mtodjournal.net/
https://dx.doi.org/10.20517/mtod.2022.09


Page 2 of Baragetti. Metab Target Organ Damage 2022;2:9 https://dx.doi.org/10.20517/mtod.2022.0915

prevention in metabolic liver diseases.
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BACKGROUND
Non-alcoholic fatty liver disease (NAFLD) is a prevalent disease that increases the risk of cardiovascular 
disease (CVD) as compared to other liver diseases (e.g., infective liver disease)[1-3]. In the presence of 
systemic metabolic complications [i.e., metabolic-associated fatty liver disease (MAFLD)[4]], the CVD risk is 
even higher. MAFLD has predominate causes from nutrition overload to altered systemic metabolism and 
inflammation[3,4], together with persistent liver damage that eventually lead to the development of liver 
fibrosis and cirrhosis.

Mechanistically, the development of MAFLD encompasses complex molecular aspects which intertwine in 
pathological processes starting from alteration in lipid metabolism and pro-inflammatory activation[5]. All 
together, these mechanisms foster oxidative stress, cell apoptosis, and extracellular matrix formation up to 
the fibrogenesis process.

Alterations in lipid metabolism, defined as over-production of triglyceride-rich liver-derived lipoproteins 
[very low density lipoproteins (VLDL)], physiologically occurs in humans following consumption of a high-
fat based meal (postprandial lipemia), but, in people with metabolic complications (including MAFLD), this 
is dramatically exacerbated[6-8]. This iterative process over time promotes a constantly elevated amount of 
VLDL, which over-engages the activity of peripheral lipases [lipoprotein lipase (LPL) and hepatic lipase 
(HL)], which are in charge of the lipolysis of the triglyceride (TG) content of VLDL[8].

Hence, the accumulation of VLDL will turn into a relative increase in the amount of remnant cholesterol in 
the downstream products of the VLDL, which are low density lipoproteins (LDL).

Mechanistically, both VLDL and LDL separately, which share apolipoprotein B (ApoB) on their surface, 
exert inflammatory and potent pro-atherogenic processes, which are discussed in this review. In response to 
the wealth of evidence from pre-clinical studies, the reduction of LDL is the first goal effectively outreached 
for reducing the risk of atherosclerotic CVD in people with high residual risk. By contrast, the 
pharmacological strategies thus far available are unable to provide a comparable magnitude of VLDL 
reduction[9,10].

Hence, the understanding of the alterations in lipid metabolism as a primum movens for these pathological 
sequelae is of immediate interest for NAFLD/MAFLD, by contrast to other types of liver disease. In fact, an 
in-depth study of these aspects might help to pave the road towards the development of future strategies 
controlling the over-production of VLDL and to more effectively reduce the entire set of atherogenic ApoB-
containing liver-derived lipoproteins.

In this review, the concept of liver-derived lipoproteins and its relevance in inflammation and CVD are 
described and critically analyzed. Subsequently, this review summarizes in detail the pharmacological 
strategies and pipeline that are being tested and currently under development for future consideration in the 
prevention of CVD in metabolic liver disease.
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THE METABOLISM OF LIPOPROTEINS DURING THE POSTPRANDIAL ENERGETIC 
CHARGE
Evolution developed the mechanism by which our body stores energy following consumption of a high fat 
meal and ensures a proper disposal in the case of long-term starvation. TGs are the principal forms of lipids 
that ensure an elevated potential energy per molecule as, when they are mobilized by LPL from visceral 
adipose tissue, they are fuel for high-energy-producing oxidative metabolism in high energy-demanding 
metabolic tissues, including the heart and skeletal muscle. Lipoproteins are key drivers of TG mobilization 
as, by virtue of their lipophilic nature, they cannot freely circulate in blood. Chylomicrons are the 
intestinally derived lipoproteins that increase in quantity immediately following the ingestion and 
absorption through the duodenal villi of the lipid content of a meal (no longer than 1 h[11]). Following arrival 
to the liver, the lipid material is immediately distributed to hepatocytes, which subsequently prepares this 
lipid material into another lipoprotein structure, i.e., VLDL. VLDLs are produced in a higher order of 
magnitude as compared to chylomicrons and, per particle, carry a TG as well as a proportion of cholesterol, 
which derives from the hepatic production pool. Both chylomicrons and VLDL undergo the activity of 
endothelium-bound lipases (both LPL and HL) to hydrolyze their triglyceride (TG) content, with VLDL 
being a preferential substrate of LPL and HL. A fine tuning of this enzymatic flow is essential to ensure the 
distribution of lipid energy sources to tissues. In fact, the activity of LPL and HL residing in visceral adipose 
tissue and the liver is enhanced following ingestion of a high fat meal, while it decreases in other oxidative 
tissues (e.g., skeletal muscle); conversely, in the fasting state, this ratio is the opposite, favoring the oxidative 
utilization and energy expenditure. These energetic flows among these metabolic sites are iterative over 
time, since the elevation of VLDL occurs in the so-called postprandial lipemia (PPL[12]), a physiological 
situation in which people from western societies spend the majority of their daily life, according to 
epidemiological projections. In fact, PPL has been recently described to last 6-8 h[13] following the 
consumption of a high fat meal (20-40 g of fats/meal) in affluent societies[14,15].

VLDL, although with a lower relative amount of TG as compared to chylomicrons, represents the 
predominant mediator of the energetic exchanges during PPL and over time, being higher in number as 
compared to chylomicrons and the preferential substrate of LPL. In addition, the iterative postprandial 
situation increases VLDL (which stays in circulation for 4-13 h on average)[16] [Figure 1]. As soon as VLDL 
undergoes the activity of lipases, it becomes smaller in size (from 30-70 to 20-25 nm in diameter) and with a 
higher residual proportion of remnant cholesterol (from 15% to 65% per particle)[16] [Figure 1]. This passage 
promotes the increase of lipoprotein density and makes the original VLDL remnant intermediate 
lipoproteins, and then low density lipoproteins (LDL). In the long term, the much higher half-life of LDL 
than that of VLDL (on average, 2.5-3.5 days for LDL [Figure 1]) explains the greater abundance of LDL 
particles, estimated at around 3-10 LDL per each VLDL in most individuals[16]. The quantity of cholesterol 
carried by these lipoproteins is much higher compared to that coming from the intestine. In fact, out of 
20-40 g of fats/meal, the actual content of cholesterol in the majority of foods is 4-700 mg per quantity of 
food consumed[17,18]. It is therefore evident that the dietary source of cholesterol is minor as compared to the 
quantity of cholesterol that is continuously re-cycled through the complex enterohepatic circulation, under 
the regulation of farnesoid-X receptor (FXR)[19].

LIVER-DERIVED LIPOPROTEINS AS POTENT CARDIOVASCULAR RISK PREDICTORS IN 
CLINIC
The clinical evidence, as does the epidemiological projection, supports that it is this exchange of cholesterol 
among lipoproteins that matters in the development of the atherosclerotic process. In fact, 
hyperchylomicronemia (the condition of elevated triglyceride rich, intestinally-derived chylomicrons in 
fasting and during PPL), as with severe hypertriglyceridemia (TG over 880 mg/dL), results in pancreatitis, 
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Figure 1. Half-life, density, cholesterol, triglyceride relative content, and diameter of liver-derived lipoproteins. This figure summarizes 
the ranges (average) of (from left to right) half-life, density, cholesterol, triglycerides relative content (percentage), and diameter of 
VLDL, Remnant/IDL, and LDL. ApoB: Apolipoprotein B; VLDL: very low density lipoproteins; IDL: intermediate density lipoproteins; LDL: 
low density lipoproteins.

metabolic complications, and liver alterations, but it does not increase CVD risk[20-22]. Mechanistically, in 
fact, large diameter chylomicrons (> 80 nm) and VLDL of immediate liver secretion (60-80 nm) are not able 
to transmigrate over the vascular endothelial layer. Conversely, CVD risk triples as TG increases from 250 
to 450 mg/dL, indicating that only VLDL remnants and cholesterol-enriched LDL, the entire set of 
apolipoprotein B (ApoB)-containing lipoproteins with less TG content and with diameter less than 60 
nm[23,24], can penetrate in the endothelial layer.

ApoB, by reflecting both the acute raise of triglyceride-rich ApoB-containing lipoproteins during PPL and 
the chronic accumulation of cholesterol, represents the key target of clinical situations associated with high 
CVD risk and characterized by elevated production of liver-derived lipoproteins.

ApoB is the protein structure present in equimolar ratio per each lipoprotein in VLDL, LDL, and all 
remnants, and it is in charge of interacting with receptors and the internalization of lipoproteins in 
peripheral tissues[25-27]. Statins, which inhibit the synthesis of cholesterol in the liver, lower LDL-C more than 
non-HDL-C and relatively more than the molar quantity of ApoB[28], indicating that reduction of cholesterol 
is not sufficient to control the hepatic secretion of all the ApoB-containing lipoproteins. Elegant Mendelian 
randomization studies that mimic the effects of CETP inhibitors and statins, by combining variants in the 
cholesterol ester transfer protein (CETP, in charge of exchanging cholesterol between VLDL and high 
density lipoproteins) and the 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR, the rate limiting step 
enzyme for cholesterol synthesis) genes (to create genetic scores) robustly affirmed the relevance in 
targeting ApoB, as a unique direct marker of both LDL and liver-derived VLDL and remnants[29]. In fact, a 
CETP score at or above the median was associated with lower levels of LDL-C, lower ApoB, and 
consistently lower CVD risk. This effect was similarly exerted by an HMGCR score at or above the median, 
which was associated with lower levels of LDL-C, ApoB, and CVD risk as well. However, the effect of both 
scores together was additive for LDL-C but not for ApoB or CVD risk. Indeed, the reduction of LDL-C in 
people harboring both scores equated to the sum of each independent score, although the extent of the 
reduction in ApoB and CVD risk were attenuated in people harboring both scores vs. those achieved by a 
single score[29]. Thus, Mendelian randomization indicates that the primary mechanism of benefit from 
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lowering LDL-C relates to the lowering of the number of LDL particles, i.e., to the lowering of ApoB. Hence, 
ApoB unifies, amplifies, and simplifies the information from the conventional LDL-C lipid marker as to the 
atherogenic risk attributable to the liver-derived lipoproteins.

Familial combined hyperlipidemia (FCHL), a polygenic situation of elevated liver-derived ApoB particle 
production, reduced TG hydrolysis, resulting in liver steatosis, metabolic complications, and elevated CVD 
risk. Conversely, familial combined hypolipidemia (FHBL2), a rare genetic condition (OMIM#605019) 
driven by deficiency of angiopoietin-like 3 (Angptl3), a natural inhibitor of peripheral lipases, results in an 
improved postprandial response to fatty meal, minimal liver-derived lipoprotein production, and 
neutralized CVD risk[30,31]. Similarly, non-alcoholic fatty liver disease (NAFLD), where PPL increases 
because of elevated quantity of liver-derived VLDL, results in elevated susceptibility to CVD[1,2], which ranks 
as the first comorbidity, even before that of extrahepatic malignancies and liver-related complications[32,33]. 
Furthermore, when systemic metabolic complications are also present (i.e., MAFLD)[34], the peripheral 
hydrolysis of TG in VLDL by lipases is also reduced[6-8], further increasing CVD risk. The hardwired 
pathophysiological connections in MAFLD, however, complicate the understanding of the metabolism of 
lipoproteins as the primum movens. Indeed, the excess caloric intake is the first mover in promoting the 
systemic inflammation associated with metabolic complications and insulin resistance. In this scenario, 
liver-derived lipoproteins might act as both mediators of the link caloric excess-inflammation and simply an 
epiphenomenon of altered handling of the lipid energetic sources in liver and adipose tissue.

THE INFLAMMATORY POTENTIAL OF LIVER-DERIVED LIPOPROTEINS
Around 75 years ago, Mereton wrote that “the lipid particles must be assumed to be retained and deposited 
from the plasma-derived nutrient lymph stream which normally passes from the lumen through the 
intramural structures towards the adventitial venules and lymphatics. It may be theorised that the increased 
particle size of the lipids in sustained or alimentary hyperlipemia is the stimulus to the phagocytosis in the 
intima by macrophages and the formation of the typical foam cells”[35,36].

This pioneering concept anticipated the subsequent data indicating that ApoB containing VLDL is 
surveilled by immune-inflammatory checkpoints, and, by entering the sub-endothelial layer of vasculature, 
they directly contribute to the inflammatory mechanisms, including cholesterol deposition and pro-
thrombotic effects[37-42], involved in the progression of atherosclerosis. Within these mechanisms, however, 
the experimental evidence produced thus far still questions whether it is the ApoB lipoprotein per se, or it is 
more likely their content of the aryl carbon chains of TG (fatty acids) or that of cholesterol[43].

Mechanisms elicited by TG in liver-derived lipoproteins
Fatty acids in lipoproteins can be medium chain (6-12 carbons) and long chain (up to 22 carbons) and can 
be saturated (SFA), monounsaturated (MUFA), or polyunsaturated (PUFA). Among PUFAs, those with a 
first double bond on the third carbon are referred to as n-3, whereas those with a first double bond on the 
sixth carbon are called n-6.

SFAs stimulate the inflammatory activation of macrophages by a process that involves toll-like receptor 4 
(TLR4), a pattern recognition receptor that plays a key role in the innate patrolling of bacterial pathogens, 
including lipopolysaccharide (LPS). In fact, the activation of TLR4 by SFA induces an over-activation of 
IL-6 and TNF-α inflammatory genes through a nuclear factor-κB (NFκB)-dependent mechanism[44,45]. The 
TLR4-mediated engagement of NFkB is tightly linked with the activation of NLRP3 in macrophages[46]. 
Similarly, in vitro, DHA and eicosapentaenoic acid (EPA, an n-3 PUFA with 20 carbons) inhibit the 
LPS-induced gene expression of cyclooxygenase-2 (COX-2), which is instead increased by treatment with 
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lauric acid[47]. Furthermore, in vitro data suggest that inflammatory pathways are triggered by different fatty 
acids[48-54] as a direct function of their degree of saturation, while others are in contrast[55].

Mechanisms elicited by cholesterol in liver-derived lipoproteins
Cholesterol can be oxidized into different types of oxysterols by a number of cardiovascular risk 
determinants as well as by factors[56,57]. Oxysterols contribute to the formation of modified LDLs [namely, 
oxidized LDL (oxLDL)], which are taken up by macrophages in the atheroma. Within cells, the 
crystallization of excess cholesterol occurs, further increasing its atherogenic potential and the ability to 
evoke the inflammatory activation of effector inflammatory lymphocytes[58] and the induction of the 
inflammasome (NOD-like receptor protein 3) complex[59,60]. Acute exposure of macrophages to oxLDL 
prolongs these mechanisms by inducing epigenetic priming of a complex set of inflammatory players[61]. In 
addition, NLRP3 undergoes this epigenetic long-lasting activation, a process that has been described to 
favor an inflammatory phenotype of the myeloid hematopoietic immune compartment[62].

The apolipoprotein content of liver-derived lipoproteins
By in vivo[18] fluoro-deoxyglucose position emission tomography (PET) blood labeling to track metabolic 
circulating leukocytes during vascular inflammation, it was demonstrated that elevated hepatic VLDL and 
their remnants (such as in the case of FCHL), despite lower levels of LDL-C, elicit arterial inflammation 
compared with subjects with familial hypercholesterolemia (a genetic condition of unique elevated LDL-C)
[63,64]. In addition, studies suggest that elevated TG and remnant cholesterol levels are causally related to 
whole body low-grade inflammation, in contrast to LDL-C[22]; more recently, a significant association of 
vascular inflammation with TG levels ≥ 150 mg/dL has been reported versus lower TG, independently of 
LDL-C alone[65].

These clinical observations recapitulate findings ex vivo as, per particle basis, cholesterol-rich liver-derived 
lipoproteins are more potent inducers of macrophage inflammatory foam cells than LDL alone and do not 
need structural modification to trigger uptake[66-68].

Human endothelial cells stimulated in vitro with fasting VLDL (concentration of 50 µg/mL in ApoB) 
isolated from patients with hypertriglyceridemia showed an exaggerated expression pattern of multiple 
inflammatory and adhesion molecule (VCAM-1 and PECAM-1). These mechanisms are even further 
induced by stimulation of these cells with VLDL for 4 h during PPL[69]. At the same time point, VLDL 
induced in vivo an increased number of circulating leukocytes[69], intracellular lipid accumulation[70], and cell 
activation, leading to adhesion to endothelium, thus suggesting that the endothelial activation during PPL is 
associated with immune response switching[70,71].

Furthermore, the inflammatory potential of liver-derived lipoproteins is supported by elegant pre-clinical 
studies showing that improving their catabolism (by improving the expression of their hepatic receptors via 
gene therapy approaches) would result in a significant regulation of the systemic inflammation, thus an 
improvement of metabolic fitness and cardioprotection[72].

In addition to ApoB, a large set of apolipoproteins characterize the membrane of liver-derived lipoproteins. 
In fact, the proteome of liver-derived lipoproteins includes other apolipoproteins (smaller-sized as 
compared to ApoB), including ApoCIII, ApoCII, ApoCI, ApoAIV, ApoAV, and ApoE, as well as regulators 
of the LPL activity, including ANGPTL-3, -4, and -8.
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Of these, ApoE is a physiological mediator of the uptake of liver-derived lipoproteins by peripheral tissues 
and macrophages[73]. In humans, ApoE is highly polymorphic, and a relatively frequent isoform (ApoE-4 
isoform[74]) causes defective uptake of liver-derived lipoproteins and plasma cholesterol increase; is 
associated with inflammation; increases phagocytosis and foam cell formation; alters efferocytotic activity; 
increases antigen presentation potential[75]; and favors fibrous cap thinning due to activation of 
metalloprotease expression[76]. In addition, ApoE deficiency in mice translates into an increased distribution 
of GM-CSF receptors by hematopoietic stem cells in the bone marrow, leading to increased and 
inflammatory myelopoiesis[77,78].

Angptl3 is another protein component of liver-derived lipoproteins which recently appears to be involved 
in inflammatory mechanisms. Angptl3 physiologically inhibits LPL and EL and, when 
over-expressed/activated, significantly reduces the hydrolysis of TGs, limiting the distribution of FAs to 
peripheral cells, including endothelial cells. By contrast to other angiopoietins on liver-derived lipoproteins 
(Angptl-4 and -8), Angptl3 is active during PPL, sensing the postprandial increase of liver-derived 
lipoprotein production under the regulation of liver X receptor (LXR)[79].

Reduced medullary hematopoietic homing was found in Angptl3-null mice[80], a finding not confirmed by 
Angptl3 gene editing on hematopoietic stem cells in hypercholesteremic mice (on a hypercholesterolemia 
background due to LDL receptor deficiency[81]). By contrast, hematopoietic stem cells transplanted in 
Angptl3-null recipients exhibited impaired repopulation[80,82]. Hence, although a tropism for the 
development of EPCs has peculiarly not been elucidated, it is plausible that Angptl3 acts as regulator of the 
hematopoietic stemness, dependent on the quantity of liver-derived lipoproteins.

LOWERING LIVER-DERIVED LIPOPROTEINS TO REDUCE INFLAMMATION: WHICH 
EVIDENCE SO FAR?
Statins (inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A, a rate-limiting step of cholesterol synthesis) 
and fibrates [agonists of peroxisome proliferator-activated receptor alpha (PPAR-α) that reduce 
liver-derived lipoprotein assembly, enhances LPL activity, and increases fatty acids oxidation in the liver] 
currently dominate the pharmacological perspective to reduce liver-derived lipoproteins.

Statins consistently reduce by up to 15% the basal TG levels per each -50% in LDL-C content in every 
population and degree of residual CVD risk they have been tested (merely because of a mass effect in 
reducing the quantity of LDL which carries this TG quantity per particle[83]). Consequently, the efficacy of 
statins in metabolic liver disease is indisputable. In addition, statins exert the same beneficial role in 
secondary prevention of CVD, being an optimal start of treatment for patients with metabolic liver disease 
with still clinical manifestation of atherosclerosis. In addition, statins are safe for patients with different 
degrees of NAFLD and MAFLD, starting from those with mild baseline elevation in transaminases (< 3× 
upper limit of normal (ULN)) up to those with compensated cirrhosis[84-89]. Some evidence is available also 
regarding the potential benefit of statins in reducing the degree of liver fibrosis[90], although more data are 
needed.

Besides statins, fibrates effectively lower TG across the range of TG levels but only modestly reduce ApoB 
levels. In addition the cholesterol reduction of fibrates differs between moderate hypertriglyceridemia (TG 
150-500 mg/dL, where LDL-C is within normal ranges according to guidelines) and severe 
hypertriglyceridemia (TG 500-880 mg/dL, where LDL-C is increased, albeit from a low baseline level[24,91,92]). 
Bezafibrate and fenofibrate demonstrated beneficial effects on both lipid metabolism and liver function in 
patients with advanced metabolic liver disease and NASH. By contrast to statins, however, the 
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atheroprotective effect of fibrates has been more questioned. More probable beneficial effects in liver 
histology have been indicated for fibrates. In fact, fenofibrate treatment in patients with advanced MAFLD 
and NASH decreased transaminases together with hepatocellular ballooning evaluated by biopsy; by 
contrast, short-term treatment with bezafibrate appeared to reduce microvesicular steatosis[93]. Conversely, 
no beneficial effects in reducing local tissue inflammation and fibrosis were reported following treatment 
with fibrates. In addition, the atheroprotective effect of fibrates has been generally questioned. Indeed, while 
experimental data show mice models of atherosclerosis treated with fibrates benefit from reduced 
monocyte/macrophage infiltration in the atheroma[94], less is clear regarding data in humans[95,96]. The 
ACCORD study, combining the use of fenofibrate with simvastatin, failed in providing evidence of an 
anti-atherosclerotic benefit as compared to the treatment with statin alone in patients with type 2 diabetes, 
metabolic complication, and atherogenic dyslipidemia[97,98]. These data are of particular interest for figuring 
out the possible efficacy of this combination in NAFLD/MAFLD patients where atherogenic dyslipidemia is 
generally combined with such comorbidities[99]. Pemafibrate, a recently developed selective peroxisome 
proliferator activated receptor α modulator (SPPARMα), was reported to exert beneficial effects on liver 
function among patients with atherogenic dyslipidemias[100,101], potentially regulating the ratio between 
circulating SFAs and PUFAs[100]. However, a large multi-center, phase 3 study investigating the effects of 
pemafibrate on the risk of occurring CV events in high-risk patients with type 2 diabetes, atherogenic 
dyslipidemia, still treated with maximally tolerated statins (PROMINENT), was stopped very recently 
following recommendations of futility[102].

Apart from these classical strategies and the pemafibrate experience, further options to reduce the burden of 
liver-derived lipoproteins are currently in the pipeline, harnessing forefront biotechnological techniques[9].

Inhibiting liver-derived lipoprotein production
Drugs such as mipomersen [an antisense oligonucleotide (ASO) inhibitor of ApoB translation] and 
lomitapide [an inhibitor of microsomal triglyceride transport protein (MTTP) activity] block either ApoB 
synthesis or the addition of lipid during chylomicron and VLDL assembly in the intestine and liver, 
respectively. However, the initial clinical use of these compounds found that they both promote hepatic TG 
accumulation and possible development of NAFLD. Despite representing a valuable alternative in rare 
severe statin resistant hypercholesterolemia, it is questionable whether their long-term use could be 
considered in FCHL or the presence of metabolic complications.

Hence, novel or combination therapies that inhibit the assembly of apoB lipoproteins and protect against 
excess intracellular lipid by promoting FA oxidation or decreasing TG synthesis are needed.

Reducing TG availability for VLDL assembly
High-dose omega-3 FA (3-4 g/day, usually the combination of DHA and EPA) reduces TG and apoB 
secretion by ~25%-30% and promotes to a very variable extent the peripheral catabolism[103,104]. However, 
some studies showed an increase in conversion of VLDL to their remnants and LDL; hence, omega-3 FA 
may have limited impact on remnant populations or the total number of atherogenic lipoproteins.

By contrast, a new formulation of high-dose EPA (icosapent ethyl) induced potent reduction of CVD risk in 
high-risk patients still on aggressive ongoing statin treatment[105]. Of note, in the same trial, icosapent ethyl 
provided up to -37% reduction at the end of a 5-year follow-up in high-sensitivity C-reactive protein (CRP), 
a liver-derived marker of systemic inflammation. In secondary analysis of the same trial, icosapent ethyl was 
effective in reducing the risk of CVD independently from the presence of diabetes and in the presence of 
atherogenic dyslipidemia, supporting its potential consideration in NAFLD/MAFLD. Besides, it is 
questioned whether the actual effect of this EPA formulation was more likely induced by the reduction in 
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liver production of ApoB lipoproteins rather than the peripheral catabolism of their remnants and LDL. 
Kinetic studies regarding the catabolism of these fractions are required.

Enhancing the peripheral clearance of liver-derived lipoproteins
This option is actually not addressed by fibrates, which, despite promoting the expression and activity of 
LPL, failed to provide benefit in reducing inflammation and CVD risk[97,98].

The inhibition of ApoCIII and Angplt3, two important down-regulators of LPL activity on the surface of 
liver-derived lipoproteins, have more recently been addressed by pharmacological research as promising 
alternatives. An ASO targeting APOC3 gene markedly reduced plasma TG levels in severe 
hypertriglyceridemia, an effect equally evident in the absence of LPL activity[106,107].

More robust reductions on TG, cholesterol, and ApoB plasma levels have been reached via the inhibition of 
Angptl3, by both monoclonal antibodies[108] and ASO therapy reducing the synthesis of the protein in 
patients with metabolic complications and liver disease[109]. Of note, regarding the second option, the robust 
effect on TG levels in patients with hepatic steatosis was not associated with rebound accumulation of TG in 
the liver, in contrast to other biotechnological drugs directed to alternative targets (e.g., mipomersen and 
lomitapide). Long-term studies addressing the anti-atherosclerotic potential of Angplt3 inhibition will be 
seminal to provide evidence for the hypothesis of this therapeutic strategy in high-risk patients with 
metabolic complications, including NAFLD/MAFLD.

Further pharmacological options and drugs in the pipeline
Glucagon-like peptide-1 (GLP-1), an incretin hormone produced by intestinal L cells and the brain, is 
physiologically released during the postprandial phase to stimulate glucose-dependent insulin secretion by 
the pancreas. The agonism of its receptor (GLP-1R) has been considered in diabetology, with successful data 
regarding atheroprotection[110]. Additionally, given the less efficient activity of insulin in regulating the 
excessive secretion of intestinal and liver-derived lipoproteins in diabetes[111], there is a rationale in 
conceiving such strategy to reduce atherogenic dyslipidemia. Pre-clinical data in rodents demonstrate that 
GLP1-R agonism reduces VLDL production and hepatic steatosis in addition to an improvement of 
glycemic control[112]. This paved the road during the last years to consider this option for the treatment of 
atherogenic dyslipidemia in NAFLD/MAFLD as well. Recent metanalysis of different trials with up to 26 
weeks of follow-up (testing multiple GLP1-R agonists, namely liraglutide, exenatide, dulaglutide, and 
semaglutide) concluded that increasing the signaling of GLP1 resulted in reductions in the absolute 
percentage of liver fat content (magnetic resonance-based techniques), lowered serum liver enzymes, and 
improved histology of NASH, without worsening the degree of fibrosis[113]. Further data are needed 
regarding the effect on lipid profile, as this would further strengthen the relevance of targeting the excessive 
production of liver-derived lipoproteins to control metabolic liver disease.

Metformin, by increasing AMP-activated protein kinase (AMPK), has been shown to inhibit the 
differentiation of monocyte to pro-inflammatory macrophages and blunt cytokines secretion by reducing 
signal transducer and activator of transcription 3 (STAT3) activity. As AMPK is essential for brown adipose 
tissue (BAT) development and homeostasis, metformin was demonstrated to increase liver-derived 
lipoproteins uptake and lipolysis by BAT[114].

LXR agonism, by virtue of its presumable effect on liver-derived lipoproteins uptake by the periphery, has 
been tested. Although LXR agonists exhibited anti-inflammatory effects in the pre-clinical setting, inducing 
monocytes egression from atherosclerotic plaque[115] and subsequent reduction of plaque size, this option 
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resulted in increased hepatic steatosis, both in healthy subjects and in statin-treated hypercholesterolemic 
patients[116], questioning the translation in vivo.

Obeticholic acid, an FXR agonist promoting the re-cycle of the cholesterol pool in the entero-hepatic 
circulation, provided encouraging data in a phase III trial[117] regarding the regulation of liver fibrosis with 
up to 38% of patients in the 25 mg arm displaying improvement of biopsy-proven fibrosis, even in the 
presence of metabolic complication. Despite the withdrawal of the compound being announced by the 
developing company[118], from a lipidological point of view, obetichollic acid induced questionable effects on 
TG (not consistently reduced as a function of FXR agonism) and LDL cholesterol content (which increased 
as compared to placebo).

CONCLUSION
The number of subjects who are at risk of liver disease is expected to grow over the coming years and will 
determine a serious escalation in the incidences of fatal and non-fatal atherosclerotic cardiovascular 
diseases[119]. This rate will be increased by the elevated pressure of additional comorbidities, with type 2 
diabetes and metabolic syndrome in primis[120] constantly increasing in affluent societies with unhealthy 
lifestyles. Together, these well-described projections call for the worldwide guidelines to determine 
algorithms for coordinated methods of interventions. At the same time, all the pharmacological trials 
targeting liver-derived lipoproteins provide a wealth of evidence supporting that the lipid content of the 
liver is causal for the evolution of CVD risk. In addition, data from these trials are paralleled to those from 
forefront trials, posing inflammation per se as the real culprit. Under this perspective, for example, PCSK9 
monoclonal antibody reduced LDL cholesterol (FOURIER trial[121]) and advanced EPA formulations 
(REDUCE-IT trial[105]) reduced VLDL quantity and cholesterol, together with convincing atherosclerotic 
CVD risk in high-risk patients and subjects with advanced metabolic complications including liver disease. 
A similar degree of benefit was not achieved in the same comorbid patients by neither anti-Interleukin Beta 
(IL-1b) monoclonal antibody (canakinumab[122]) nor colchicine[123], despite potently reducing a large set of 
inflammatory markers[124]. Lessons from the critical comparison of these trials[125] will improve the 
sensitization and understanding of the pathophysiological mechanisms involving dyslipidemias and 
elevated ApoB liver-derived lipoprotein levels. The pre-clinical evidence regarding their causal effects in the 
evolution of atherosclerosis and related inflammation will certainly help to foster the sensitization of 
physicians and pharmacological research and companies in the development of new and more effective 
therapeutic weapons.
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