Supplementary Material

Innovative approaches of porous carbon materials derived from energy waste and their electrochemical properties

Shuai Ruan^{1,2}, Xinping He^{2,*}, Hui Huang², Yongping Gan², Yang Xia², Jun Zhang², Wangjun Wan³, Chen Wang³, Xinhui Xia^{2,4,*}, Wenkui Zhang^{1,2,*}

¹Moganshan Institute ZJUT, Kangqian District, Deqing 313200, Zhejiang, China.

²College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.

³Zhejiang Academy of Science and Technology for Inspection & Quarantine, Hangzhou 311215, Zhejiang, China.

⁴School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, Zhejiang, China.

*Correspondence to: Prof. Xinhui Xia, Science and Engineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, Zhejiang, China. E-mail: cmxwy@zjut.edu.cn; Prof. Xinping He, Science and Engineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, Zhejiang, China. E-mail: xinpinghe@zjut.edu.cn; Prof. Wenkui Zhang, Science and Engineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, Zhejiang, China. E-mail: xinpinghe@zjut.edu.cn; Prof. Wenkui Zhang, Science and Engineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, Zhejiang, China. E-mail: msechem@zjut.edu.cn

Supplementary Table 1. Composition analysis of fly ash (1)

Element (%)	SiO ₂	Al ₂ O ₃	Fe ₂ O	CaO	K ₂ O
Untreated	44.26	39.84	5.45	2.8 5	2.15
Hydrothermal treatment	47.82	40.38	3.62	1.24	2.51
Carbonization	80.34	12.08	0.29	0.13	0.85

Supplementary Table 2. Composition analysis of fly ash (2)

Element (%)	TiO ₂₂	MgO	SO ₃	NaO ₂	Others
Untreated	2.05	0.88	0.87	0.78	0.87
Hydrothermal treatment	2.21	0.84	0.09	0.63	0.66
Carbonization	3.266	0	0.25	1.06	1.73

Supplementary Figure 1. SEM images of (a) Corn cob after hydrothermal treatment, the illustration shows the photo and EDS spectrum at high magnification rates; (b-c) Fly ash after hydrothermal treatment; (d-e) CFC precursors after hydrothermal treatment at different magnification

Supplementary Figure 2. The Raman spectra of CC, FA and CFC

Supplementary Figure 3. (a-f) Nitrogen adsorption/desorption isotherm and pore size distribution diagram of corn cob, fly ash, corn cob and fly ash mixture diagram after hydrothermal treatment

Supplementary Figure 4. (a-b) CV curves of CC, and FAC at different scanning speeds; (c-d) constant current charge and discharge curves of CC, and FAC at different current densities