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Abstract

Testicular germ cell tumors (TGCTs) are a cancer pharmacology success story with a majority of patients cured 
even in the highly advanced and metastatic setting. Successful treatment of TGCTs is primarily due to the exquisite 
responsiveness of this solid tumor to cisplatin-based therapy. However, a significant percentage of patients are, 
or become, refractory to cisplatin and die from progressive disease. Mechanisms for both clinical hypersensitivity 
and resistance have largely remained a mystery despite the promise of applying lessons to the majority of solid 
tumors that are not curable in the metastatic setting. Recently, this promise has been heightened by the realization 
that distinct (and perhaps pharmacologically replicable) epigenetic states, rather than fixed genetic alterations, 
may play dominant roles in not only TGCT etiology and progression but also their curability with conventional 
chemotherapies. In this review, it discusses potential mechanisms of TGCT cisplatin sensitivity and resistance to 
conventional chemotherapeutics.  

Keywords: Testicular cancer, embryonal carcinoma, cisplatin, resistance, epigenetics, testicular germ cell tumors, 
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INTRODUCTION
Testicular germ cell tumors (TGCTs) are the most common neoplasm in men age 15 to 44 years old with 
increasing incidence in the last 40 years[1]. Metastatic TGCTs have been a model for transforming a once 



fatal metastatic solid tumor into one that is curable. The discovery in the mid-70s that TGCTs are sensitive 
to conventional cisplatin-based combination chemotherapy eventually resulted in an improvement in 
5-year survival from less than 10% to over 80% even in patients with disseminated disease[2,3]. However, 
15%-20% of all patients and 50% of poor risk patients are refractory to treatment and only 50% of patients 
can be cured after relapse with salvage therapy consisting of high dose platinum followed by stem cell 
transplant or traditional chemotherapies[4-6]. Most patients progressing after high dose therapy will 
succumb to their disease as will those patients who undergo late relapse[6,7]. Attempts to incorporate newer 
targeted therapies to treat refractory TGCTs have been unsuccessful. An average of nearly 40 years of life 
are lost when a patient dies from testicular cancer, over a decade more than any other adult malignancy[8,9]. 
Further, TGCT patients successfully treated with cisplatin-based therapies suffer from acute and life-
long toxicities including infertility, hypogonadism, androgen deficiency, decreased lung and kidney 
function and neurotoxicity and have a greater risk of developing cardiovascular disease and secondary 
malignancies[10]. Hence, there is a pressing clinical need to devise new strategies to treat cisplatin refractory 
TGCTs and a rationale to devise targeted, cisplatin-sparing therapies. 

TGCTs remain the only solid malignancy curable with chemotherapy. A greater understanding of the 
hypersensitivity and resistance of TGCTs has the potential to not only impact refractory patients but also 
may inform strategies to sensitize other solid tumors to conventional chemotherapies[11,12]. TGCTs are 
classified based on histology into two distinct subtypes seminomas and nonseminomas. Both seminomas 
and nonseminomas likely arise from precursor cells called germ cell neoplasia in situ (GCNIS)[13-15]. 
Nonseminomas can be further classified as embryonal carcinoma (EC), teratoma, yolk sac tumor and 
choriocarcinoma. Pluripotent EC are the stem cell-like component of nonseminoma. TGCTs and EC 
have an intrinsic hypersensitivity to drug-induced cell death[16,17]. The basis of this hypersensitivity and 
mechanisms to account for chemotherapy resistance remain elusive. TGCTs likely represent transformed 
germ cells and may have inherited unique mechanisms of sensitivity to DNA damage and other stress to 
prevent germline mutations. Alterations in traditional mechanisms of cisplatin sensitivity and resistance in 
other solid tumors have generally not been accepted as the reasons for the hypersensitivity of TGCTs[3,12,18].

TGCTs have one of the lowest overall somatic mutation rates of all solid tumors and possess unique 
epigenetic states that are likely a ref lection of the epigenetics of their primordial germ cell (PGC) 
origins[19,20]. Further EC and other pluripotent cells are known to undergo extensive plasticity in 
tumorigenicity depending on the environment[21,22]. These findings suggest that epigenetics may play 
a larger role in the chemotherapeutic hypersensitivity and resistance of TGCTs. Recently genetic 
susceptibility, biological signaling, and genetic and environmental factors have been examined to explain 
the mechanisms responsible for TGCTs curability, pathogenesis and development of treatment resistance. 
This review will focus on potential mechanisms of cisplatin resistance in TGCTs that may relate to the 
exquisite sensitivity of this solid tumor to conventional chemotherapeutics that may provide strategies to 
overcome acquired cisplatin resistance.

ETIOLOGY AND PATHOLOGY OF TGCTS
The incidence of TGCTs has been steadily rising in young males[9]. According to the 2018 WHO global 
cancer observatory, TGCTs are estimated to have the largest number of new cases among all cancers for 
males under the age of 34 years in the USA and second largest worldwide [Figure 1][23]. The incidence 
of TGCTs varies widely with geographic location with the highest incidence in northern European 
countries and the lowest in Africa nations [Figure 2]. The reasons for these differences is not known but 
is hypothesized to be a combination of inheritable and environmental factors including exposure to 
endocrine disruptors in utero. Common risks for TGCTs include endocrine disruptors, cryptorchidism[24], 
Down’s syndrome[25], family history of cancer[26], low birth weight, premature birth, birth order, bleeding 

Singh et al . Cancer Drug Resist  2019;2:580-94  I  http://dx.doi.org/10.20517/cdr.2019.19                                                             Page 581



during pregnancy, hormone exposure during pregnancy, high maternal age and neonatal jaundice[27,28]. Late 
age at puberty, male infertility and testicular dysgenesis syndrome are also associated with TGCTs[29-33]. 

EC cells resemble embryonic stem (ES) cells[22]. Both cell types possess pluripotency and have close 
similarities in gene expression[34,35]. Interestingly, despite similarities, EC cells are malignant, while ES cells 
are not. GCNIS-derived TGCTs have cytogenetic and molecular anomalies that mainly include aneuploidy 
and gain and loss of distinct chromosomal regions coupled with somatic mutation rates that are low[19,20]. 
Chromosome 12p amplification, such as isochromosome 12p and chromosome 12p overrepresentation are 
nearly universally present and pathognomonic for TGCTs[36,37]. Other chromosomal anomalies associated 
with TGCTs include gain of genetic material on chromosome 1, 2p, 7, 8, 12, 14q, 15q, 17q, 21q, and X and the 
deletion of genetic material from chromosome 4, 5, 11q, 13q, and 18q2[38]. Similarly, multiple passaging of ES 
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Figure 1. Estimated new cancers in males aged 0-34 in the USA and worldwide for 2018. Pie charts represent the distribution of new 
cancer cases in the United States and worldwide for males 0-34 years of age. Data source: World Health Organization global cancer 
observatory. 

Figure 2. Estimated number of new TGCT cases, deaths and prevalence worldwide for 2018. Pie charts represent the distribution of new 
TGCT cases, TGCT deaths and TGCT prevalence worldwide for all aged males. Data source: WHO global cancer observatory. TGCTs: 
testicular germ cell tumors 



cells has been shown to result in acquired alterations similar to those found in TGCTs and EC, including 
chromosome 12, 17, and X gain[39]. A recent analysis performed on a 150 TGCT cohort from the TCGA[40] 
indicates gain/amplification of 12p in the majority of patients with gain in 12q, 8q, 22q and deletion/loss of 
11q, 18q, 18p, 9p, 4q, 10q, 5q, 16q and 19q also occurring with much less frequency [Figure 3]. 

The GCNIS legion is considered a precursor for all TGCT subtypes. GCNIS has been hypothesized 
to emerge from PGCs or early gonocytes that have transformed in utero[41-43]. Evidence that TGCTs 
begin during development include similarities in expression of the markers KIT, OCT4, and PLAP, 
cell morphology, genomic imprinting and transcriptomics between GCNIS and PGCs[44,45]. Further, 
abnormalities of germ cell development are associated with TGCT incidence[46]. In addition extragonadal 
TGCTs are found at the midline, which is where PGCs migrate during development[47,48]. Taken together 
the data support that TGCTs come from arrested PGCs or gonocytes that lie dormant but further progress 
with gonadal hormones during sexual maturation[41].

Genetic drivers of TGCTs are poorly understood compared to other cancers. Several genes have been 
implicated in the pathogenesis of TGCTs, but their exact roles are still uncertain and underscore that 
TGCT etiology is likely widely polygenic in nature.  Genome-wide association studies have been useful in 
identifying variants that contribute to risk of TGCTs.  Allelic variation within the kit-ligand gene 12q22 
is the strongest genetic risk factor for TGCTs[49]. Several other allelic variants have been identified that 
correlate with TGCTs susceptibility[45]. Somatic mutation in TGCTs are relatively rare and of relatively 
low frequency and occur mostly in seminoma. Gain-of function mutations in KIT are most frequent at 
18%[19,20]. Other mutations in seminoma include KRAS (14%) and NRAS (4%) [Figure 3]. 

Figure 3. Genetic alteration in TGCTs. Analysis of 150 patient TGCT cohort generated through FireBrowse. Top genetic alterations are 
arranged by frequency. Data source: TCGA. TGCTs: testicular germ cell tumors 
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EPIGENETICS OF TGCTS
There is considerable evidence that epigenetics may play a role in TGCT biology. As stated above, 
environmental exposures in utero and testicular dysgenesis syndromes are major risk factors for TGCTs. 
Further, normal ES cells are very similar in gene expression and biology to EC cells. Transformation 
of both of these pluripotent cell types are influenced by environmental factors exemplified by findings 
that ES cells form teratoma and teratocarcinomas when implanted ectopically in mice, while EC cells in 
certain situations can participate in normal development when placed in the early embryo[21,50]. Recent 
studies have characterized the pattern of TGCT DNA methylation. It is important to remember that PGCs 
normally undergo erasure of imprinting during development[51]. Thus, TGCTs may have arisen from a 
germ cell lacking imprinting.  Evidence to support this comes from the finding that IGF2 and H19 are 
expressed from both alleles in TGCTs but are otherwise exclusively expressed from one parental allele in 
adult tissues[52]. TGCT genomic DNA is hypomethylated in comparison to most solid tumors. Seminomas 
possess very little DNA methylation while EC have an intermediate level of DNA methylation compared 
to somatic cancers and EC-derived teratoma are hypermethylated[20,52-55]. The level of DNA methylation 
roughly correlates with cisplatin curability with seminoma being the most curable followed by EC and 
other nonseminoma components besides teratoma. Teratoma is resistant to cisplatin treatment.   

Interestingly, pluripotent cells including EC cells possess high levels of non-CpG methylation called mCpH 
(H = A, C, T) along gene bodies of genes that are highly expressed[52,56]. In EC up to 25% of all cytosine 
methylation is mCpH while over 99% of all cytosine methylation in somatic cells is CpG. Also, mCpH 
does not occur in the mature components of nonseminoma or in seminoma, suggesting mCpH is closely 
associated with the pluripotent and reprogrammed state of EC[52]. The role of non-CpG methylation in EC 
is currently unclear. 

Histone modifications are well-established epigenetic regulators. Polycomb complexes modify chromatin 
to repress homeotic genes which have an important role in stem cell dynamics[57,58]. Gene repression is 
initiated by polycomb repression complex 2 which contains histone methyltransferase activity resulting 
in histone H3 trimethylation on lysine 27 (H3K27me3). The H3K27me3 then recruits PRC complex 1 
to further mediate repression of gene expression. Alterations in BMI1 and EZH2 and other polycomb 
components frequently occurs in cancer[59,60]. Little is known concerning alterations in histone modifiers in 
TGCTs[61,62]. The H3K4me demethylase, LSD1 has been shown to be a key regulator of pluripotency in ES 
and EC cells.  LSD1 has been reported to be highly expressed in EC and seminoma which correlates with 
LSD1 and HDAC1 inhibitor sensitivity[63,64].  

Another form of epigenetic regulation recently studied in TGCTs is mediated by miRNAs. Voorhoeve et al.[65], 
showed that in TGCT cells miR-372 and miR-373 neutralized p53 function through inhibition of the tumor 
suppressor LATS2. Several miRNAs appear to be specifically expressed in TGCTs and have been investigated 
as potential new serum biomarkers for TGCT patients[66]. For example, miR-371a-3p was reported to have 
high sensitivity and specificity for detecting TGCT disease burden and was not elevated in control patients 
or patients with other cancer types[66,67]. Serum levels of  miR-371a-3p increased with TGCT progression and 
decline after surgery[66,67]. Since TGCTs appear to have distinct epigenetics compared to normal tissues and 
other cancers, the use of epigenetic biomarkers may be particularly useful for disease management of TGCT 
patients.

MECHANISM OF CISPLATIN RESISTANCE IN TGCTS
Several principles of solid tumor chemotherapy were validated during the optimization of curative TGCTs 
regimens. Seminomas are very sensitive to cisplatin-based therapy and are highly curable regardless of 
stage[2]. Nonseminoma are somewhat less sensitive to chemotherapy especially for tumors of more advanced 
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grade and stage[2]. For advanced TGCTs, bleomycin, etoposide and cisplatin or etoposide, ifosfamide and 
cisplatin (VIP) are the first line standards of care. The International Germ Cell Cancer Collaborative 
Group devised a risk classification based on serum markers and primary and metastatic sites that divided 
metastatic nonseminoma patients into good, intermediate, and poor risk with cure rates of 90%, 75% and 
50%, respectively[68]. Currently there are no predictive biomarkers to identify which poor-risk patients will 
die from disease. There is a clinical need to better identify which high risk patients will fail conventional 
therapy. Salvage high-dose chemotherapy with stem cell rescue or conventional dose chemotherapy can 
induce remissions in approximately 25% of relapse cases[69]. The treatment of refractory multi-relapsing 
disease is very challenging and most cases cannot be cured. Targeted approaches including tyrosine-kinase 
inhibitors and immunotherapy have failed to demonstrate activity in these refractory cases. Mechanisms 
of hypersensitivity and acquired resistance in TGCTs are likely multi-factorial and could include cellular 
detoxification, altered platinum accumulation, DNA repair, and alterations in apoptotic pathways[12,18,70]. 
However, these mechanisms are shared by many solid tumors that are not curable. Further TGCTs are 
highly sensitive to a variety of agents that do not share common import and export pathways and mediate 
different forms of DNA damage repaired by distinct mechanisms. Hence, mechanisms responsible for 
TGCT sensitivity and resistance may be related to how these tumors respond to damaged DNA mediated 
in part by their unique cellular context[3,71]. In the next section, we will review suggested mechanisms of 
therapy resistance in TGCTs.

Cisplatin resistance mechanisms can be classified as pre-target, on-target, and post-target[70]. Pre-target 
involve alterations preceding the binding of cisplatin to DNA, on-target resistance involves alterations 
directly relate to DNA-cisplatin adducts, post-target resistance involves mechanisms downstream of 
cisplatin-mediated DNA damage [Figure 4]. In this section we will discuss these cisplatin resistance 
mechanisms. 

Pre-target resistance
Before cisplatin binds DNA, cancer cells can avoid cytotoxicity by two main mechanisms: first, decreased 
cellular accumulation of cisplatin and second, enhanced cisplatin detoxification by glutathione, 
metallothioneins and nucleophilic cytoplasmic “scavengers”[70]. Cellular uptake of cisplatin is typically 
mediated by passive diffusion or facilitated transport, although the copper transporter SLC31A1 has also 
been implicated as a cisplatin transport mechanism[72]. Cisplatin uptake rates in TGCT and other cancer 
cells have been reported to be similar[73]. A number of ATP-binding cassette  transporters including 
MDR1 have been linked to cisplatin efflux[70]. However, no cisplatin resistance mechanism related to drug 
transporters has been reported for TGCTs.  

Resistance to cisplatin is often associated with increased levels of thiol-containing proteins such as 
glutathione and metallothionein which detoxify cisplatin through conjugation. In general it appears that 
the level of these detoxifiers are low in TGCTs compared to some other tumor types[74]. Interestingly, 
one study showed high levels of a glutathione-S-transferase, an enzyme that conjugates GSH in resistant 
teratoma[75]. These finding suggest that low levels of exporters and detoxifiers may play at least a 
contributory role in TGCT sensitivity to cisplatin. However, in general pre-target mechanisms have not 
been widely recognized as significant sources of cisplatin resistance in TGCTs.

On-target resistance
Inter/intra-strand DNA adducts and subsequent apoptosis can be defective in cisplatin-resistant cancer 
cells due to a variety of mechanisms. TGCTs have been shown to have similar rates of cisplatin DNA 
adduct formation upon initial exposure compared to other tumor types[71,74,76]. However, other reports 
have implied that TGCTs possess a diminished capacity to repair cisplatin adducts[77,78]. Correspondingly, 
cisplatin-resistant cells may have acquired the ability to repair adducts at an enhanced rate or gained 
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the ability to tolerate unrepaired lesions. The majority of cisplatin DNA lesions are repaired by the 
nucleotide excision repair (NER) system[79,80]. One proposed mechanism for cisplatin resistance involves 
high expression of the high-mobility group box protein 1 (HMGB1) in TGCT cells[81]. HMGB1 appears to 
bind selectively to cisplatin DNA crosslinks and interferes with NER[82-85]. Similar to HMGB1, HMGB4 is 
also highly expressed in TGCTs and likewise recognizes cisplatin-DNA intrastrand cross-links, stalling 
the NER machinery which otherwise would excise and repair the damage[81]. Hence, one proposed 
mechanism to explain the chemosensitivity of TGCT is decreased capacity to repair interstrand platinum-
DNA adducts, the most toxic from of cisplatin induced adducts by either excision repair or homologous 
recombination. We refer the reader to an excellent recent review on this topic[86].

Several studies have linked defective mismatch repair (MMR), microsatellite instability and BRAF 
mutations with relapse and treatment failure in TGCT patients[87-90]. Refractory TGCTs have been shown 
to have decreased expression of MMR genes including MLH1, MLH2, or MSH6, suggesting that decreased 
MMR may be a mechanism of TGCT resistance[89]. However, the precise molecular mechanisms are 
unclear.  Future studies are needed to solidify the exact role of MMR in cisplatin resistance in TGCTs. Poly 
(ADP-ribose) polymerase (PARP) is involved in the repair of DNA single-strand breaks via base excision 
repair (BER), a key cellular DNA repair pathway.  Mego and colleagues observed overexpression of PARP 
in TGCTs compared to normal testicular tissue and PARP inhibitors were shown to reverse cisplatin 
resistance[91,92]. 

Post-target resistance 
Post-target resistance to cisplatin can result from alterations in signal transduction pathways that mediate 
apoptosis in response to DNA damage. Non-repairable cisplatin-induced DNA damage leads to the 
activation of a multi-branched signaling cascade with proapoptotic outcomes.  A distinguishing feature 
of TGCTs is that they are devoid of p53 mutations compared to almost all other solid tumors[19,20]. Several 
groups have provided evidence that hyperactivation of p53 is a key mechanism for the hypersensitivity 
of TGCTs to cisplatin[93-97]. However, the role of p53 mutations in cisplatin resistance of TGCTs has been 
controversial[3,96]. Mutations in p53 and overexpression of MDM2 do appear to occur in a proportion of 
cisplatin refractory TGCTs but the extent of these mutations is unclear and will require studies with larger 

Figure 4. Proposed mechanisms mediating cisplatin sensitivity and resistance in TGCTs. Cisplatin resistance mechanisms are classified 
as pre-target, on-target, post-target and epigenetic mechanisms. ABC: atp-binding cassette transporters; GST: glutathione s-transferase; 
NER: nucleotide excision repair; MMR: mismatch repair; BER: base excision repair; RA: retinoic acid; RTK: receptor tyrosine kinase; TGCTs: 
testicular germ cell tumors 
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numbers of cisplatin refractory cases[98,99]. High abundance of MDM2 has been shown to correlate with 
cisplatin resistance in TGCT cell lines and disruption of the MDM2-p53 interaction by nutlin-3 strongly 
potentiated p53-dependent apoptosis via the Fas/FasL pathway[100]. NOXA and PUMA, downstream targets 
of p53 and p53 family members p63 and p73, have been linked to the cisplatin sensitivity of TGCTs[95,101,102]. 
Overexpression of the cell cycle regulator CCND1 has been described as a mechanism of cisplatin 
resistance[103]. Upregulation of IGF1R expression and signaling was also found to contribute to acquired 
cisplatin resistance in an in vitro nonseminoma model[104]. 

Di Vizio et al.[105] provided evidence that the PDGFR/PI3K/AKT pathway plays a role in the development 
of TGCTs. Dysregulation was mainly due to loss of PTEN in TGCTs. Other studies demonstrated a role 
for this pathway in cisplatin resistance in TGCTs patients and cell lines[106,107]. Inhibition of PDGFRβ 
mediated phosphorylation of AKT by Ly294002 reversed cisplatin resistance in TGCT cell lines[107]. 
Furthermore, activation of the PI3K/AKT pathway phosphorylated MDM2 and p21 which led to 
cytoplasmic accumulation of p21 and inhibition of p53 mediated apoptosis in response to cisplatin[106,107]. 
Somatic mutations within PI3KCA, AKT and FGFR3 were also reported in cisplatin resistant TGCTs[108]. 
Taken together, pre-clinical studies indicate that targeting this pathway may reverse cisplatin resistance in 
TGCTs[107,109,110]. However, Mego et al.[111] showed limited efficacy of the mTOR inhibitor everolimus against 
unselected heavily pretreated refractory TGCTs.

The cisplatin-resistant phenotype can also be sustained by alterations in signaling pathways that are 
not directly engaged by cisplatin, so called “off-target” effects[112-114]. It is well recognized that epigenetic 
alterations occurring upon differentiation increase cisplatin resistance in TGCT cells[115]. TGCTs have 
been shown to undergo differentiation after retinoic acid treatment and molecular changes that occur 
in these cells after treatment have been well characterized[114,116]. Gutekunst et al.[95] demonstrated short-
term differentiation of EC cells by retinoic acid significantly decreases the expression of IER3, NOXA 
and PUMA and caused a loss in cisplatin hypersensitivity. Other studies have reported that loss of OCT4 
expression leads to cisplatin resistance in EC cells[112,113]. Events in addition to differentiation that can 
lead to downregulation of OCT4 include hypoxia[117] and cisplatin treatment[118]. OCT4 is also known to 
induce the expression of miR106b which in turn suppresses p21 expression[106]. Similarly, increased OCT4 
expression was also significantly correlated with cisplatin response in xenograft TGCTs models, cell lines, 
and tumors[112,116,119,120]. Altogether, these finding suggest a connection between OCT4, NOXA and the 
cytoplasmic expression of p21 in cisplatin resistance TGCTs.

Epigenetics
Epigenetic silencing, for example linked to hypermethylation, could mediate TGCT cisplatin resistance 
by both on-target and post-target/off target mechanisms. Accumulating evidence suggests that an 
increase in DNA methylation may be associated with cisplatin resistance[61,121,122]. Seminomas are generally 
considered more sensitive to cisplatin than nonseminoma and are severely hypomethylated. EC cells 
are also sensitive to cisplatin but have a higher incidence of resistance and have an intermediate level of 
methylation while more difficult to treat teratomas, yolk sac tumors and choriocarcinoma have the highest 
level of DNA methylation[37,52]. Methylation of several specific gene promoters have been associated with 
inherent and acquired cisplatin resistance in TGCTs and cell lines including RASSF1A, HIC1, MGMT 
and CALCA[123-125]. Additionally, cisplatin treatment has been shown to be associated with increased DNA 
methylation in vivo[123]. We have shown that a series of testicular cancer derived EC cell lines are hypersensitive 
to the DNA methytransferase inhibitors decitabine and quadecitabine in vitro and in vivo compared to 
somatic tumors[126-128]. This hypersensitivity extended to cisplatin refractory EC and was dependent on high 
levels of the DNA methyltransferase, DNMT3B. Importantly, pretreatment of cisplatin refractory cells 
in vitro and in vivo could resensitize them to cisplatin and this activity was associated with activation of 
p53 and immune-related pathways[126-128]. These findings have been validated by a number of additional 
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studies[124,129,130]. This data provided the rationale to combine cisplatin and guadecitabine in a phase I 
study at Indiana University [NCT02429466]. Significant responses were observed including two complete 
and two partial remissions in heavily pretreated platinum refractory TGCT patients (Spinella et al., in 
preparation). In a new study with an extended series of cisplatin resistant EC cells we unexpectedly found 
a tight association between cisplatin resistance and decreased H3K27 methylation of polycomb target genes 
that was associated with a decrease in expression of BMI1 and EZH2[131] (Spinella et al., in preparation). 
How the decrease in H3K27 methylation of polycomb targets relates to DNA methylation is currently being 
investigated. Interestingly, decreased H3K27 methylation has been previously associated with increased 
DNA promoter methylation in ES cells[132-134]. Another promising approach to overcome cisplatin resistance 
in a number of cancer types including TGCTs is the used of the bromodomain inhibitor JQ1 that target the 
epigenetic reader bromo and extra-terminal domain proteins[135-137].

We speculate that epigenetic context is a key driver of cisplatin resistance and sensitivity in TGCTs and 
specifically the DNA hypomethylation may be associated with cisplatin hypersensitivity [Figure 5]. This 
could be achieved by at least two, mutually-nonexclusive, mechanisms. In the first (on-target) more 
“open”, pluripotent-like chromatin may be more accessible to cisplatin binding and adduct formation. In 
the second (post-target/off target) the open, pluripotent chromatin of TGCTs may possess an inherent 
transcriptional plasticity not shared with other solid cancers. This may allow for a more robust acute 
transcriptional response to DNA damage, for example mediated by p53. In this model, epigenetic 
reprogramming associated with loss of pluripotency would be a source of cisplatin resistance in teratomas 
and perhaps other TGCT subtypes than are or become refractory to cisplatin [Figure 5]. A more complete 
understanding of the epigenetic state of sensitive and resistant TGCTs, especially in the clinical setting is 
needed to fully test this model.

CONCLUSIONS
Mechanisms of cisplatin hypersensitivity and acquired resistance in TGCTs are likely multi-factorial 
and associated with the germ cell origins of these solid tumors. Epigenetics may play a more prominent 
role in the biology of TGCTs compared to somatic solid tumors that possess higher mutation rates and 
more frequent and obvious driver mutations. This likely extends to one of the important clinical features 
of TGCT, their curability. Considering that epigenetic states are malleable, one can envision reinstating 

Figure 5. Epigenetic context as a key determinant of cisplatin sensitivity and resistance in TGCTs. TGCTs: testicular germ cell tumors
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“sensitive” epigenetics to cisplatin refractory TGCTs and theoretically even to common somatic solid 
tumors. Of course and as always, how these strategies alter toxicity to normal tissues will be an important 
issue.
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