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Abstract
Unsupervised learning has shown to be effective for image depth prediction. However, the accuracy is restricted be-
cause of uncertain moving objects and the lack of other proper constraints. This paper focuses on how to improve the
accuracy of depth prediction without increasing the computational burden of the depth network. Aggregated residual
transformations are embedded in the depth network to extract high-dimensional image features. A more accurate
mapping relationship between featuremap and depthmap can be built without bringing extra network computational
burden. Additionally, the 2D discrete wavelet transform is applied to the structural similarity loss (SSIM) to reduce
the photometric loss effectively, which can divide the entire image into various patches and obtain high-quality image
information. Finally, the effectiveness of the proposed method is demonstrated. The training model can improve the
performance of the depth network on the KITTI dataset and decrease the domain gap on the Make3D dataset.

Keywords: Unsupervised depth estimation, computational complexity, aggregated residual transformations, 2D dis-
crete wavelet transform

© The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0
International License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, shar­

ing, adaptation, distribution and reproduction in any medium or format, for any purpose, even commercially, as long as you
give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate
if changes were made.

www.intellrobot.com

https://creativecommons.org/licenses/by/4.0/
www.intellrobot.com
a
图章



Page 85                                                                    Li et al. Intell Robot 2021;1(1):84-98 I http://dx.doi.org/10.20517/ir.2021.06

1. INTRODUCTION
Predicting depth from a single 2D image is a fundamental task in computer vision. It has been studied formany
years with widespread applications in reality, such as visual navigation [1], object tracking [2,3], and surgery [4].
Moreover, accurate depth information is vital with considerable influence on the performance of autonomous
driving, where expensive laser sensors are usually used. Recent advances in convolutional neural networks
(CNNs) show their powerful ability to learn an image’s high-dimensional features. Especially, the mapping
relationship between image feature and image depth can be built. Generally, monocular depth estimation ap-
proaches can be classified into three categories: supervised [5–9], semi-supervised [10], and unsupervised [11–19].
Both supervised and semi-supervised learning rely on the image depth ground truth. Using a laser sensor to
obtain the depth ground truth of many images is expensive and difficult. However, unsupervised learning has
the advantage of eliminating the dependency on the depth ground truth. Therefore, more and more studies
are training monocular depth estimation networks using unsupervised methods from monocular images or
stereo pairs. Compared with stereo pairs, a monocular dataset is more general as the input of network. How-
ever, it needs to estimate the pose transformation between consecutive frames simultaneously. As a result, a
pose estimation network is necessary that outputs relative 6-DoF pose with given sequences of frames as input.

Most unsupervised depth estimation networks [5,8,11] are constructed using typical CNN structures. On the
one hand, a series of max-pooling and stride operations may reduce the network’s ability to learn image fea-
tures and cause lower quality of depth map. On the other hand, to improve the performance of the network,
deeper convolution layers are designed in depth CNNs. They increase the computational burden of the net-
work and bring extra hardware cost. In most cases, the cost of the network overweighs the benefits generated
by the network. To improve the depth estimation performance without increasing the network burden, an
end-to-end unsupervised monocular depth network framework is proposed in this paper. Inspired by previ-
ous work [20] on the image classification task, aggregated residual transformations (ResNeXt) are migrated to
the depth estimation field. Based on typical depth CNNs, the ResNeXt block is embedded to extract more
delicate image features in the encoder network. In addition, more accurate mapping relationship between the
feature map and depth map can be built without bringing extra network burden. In addition, the accuracy of
depth network suffers from some noise (𝑒.𝑔., haze and rain) in the complex images. To reduce the influence
of noise, the 2D wavelet discrete transform [21] is applied to SSIM loss, which can recover high-quality clear
images. A sample of depth prediction is shown in Figure 1.

In summary, our proposed network can improve depth prediction accuracy without increasing network com-
putational complexity. The contributions of this paper can be summarized as follows:

(1) Based on a ResNeXt block, a novel feature extraction module for depth network is developed to improve
the accuracy of depth prediction. It can not only extract high-dimensional image features but also guide the
network to more deeply learn the scene to get farther pixel depth.

(2) A wavelet SSIM loss is applied to photometric loss to converge the training network. Various patches with
clearer image information computed by DWT are used as input, rather than the whole image, to the loss func-
tion, which can remove some noise (daze, rain, etc.) from the image.

The rest of this paper is organized as follows. The related work on depth estimation is discussed in Section
2. Section 3 presents an overview of the proposed network architecture and the loss function. Then, some
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Figure 1. The input image from the KITTI dataset (top); the baselineMonoDepth2 [22] (M, ResNet50, without pre-training) depth prediction;
(middle) and our result (bottom).

experiments based on different datasets are presented to verify the performance of the proposed network in
Section 4. Finally, the conclusions and future work are introduced in Section 5.

2. RELATED WORK
2.1. Supervised depth estimation
Based on vast training datasets with depth ground truth, depth estimation networks show great performance
in recent years. Eigen et al. [5] first demonstrated the huge potential of CNNs in depth prediction from a single
image. They obtained reliable depth estimation results by using a coarse-to-fine depth network. Further, Liu
et al. [7] combined CNNs with Markov random fields (MRF) to learn intermediate features, acquiring clearer
local details of depth map in the visual effect. Laina et al. [8] changed the structure of the depth network and
proposed a residual CNNs to model the mapping relationship between monocular image and its correspond-
ing depth map. Instead of using absolute depth ground truth, Chen et al. [9] acquired relative depth value labels
between the random pixel pairs from the image to train the depth network. In addition, to obtain dense depth
map, Kuznietsov et al. [10] proposed a semi-supervised method which used both sparse ground truth depth for
supervised learning and a photo consistent loss in stereo images for unsupervised learning.

Even though the works mentioned above significantly contributed to depth estimation, these methods still
suffer from the limitation of depth ground truth.

2.2. Unsupervised depth estimation
Based on stereo or monocular images, unsupervised learning methods focus on how to design the supervisory
signal. The typical solution is to use view synthesis as a proxy task [11,12,14–24], so as to get rid of depth ground
truth.

2.2.1. Unsupervised depth estimation from stereo images
Using stereo images is a feasible unsupervised way to train a monocular depth network. A depth network
can be obtained by predicting the left–right pixel disparities between stereo pairs during training. It can be
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applied when predicting monocular image depth. Garg et al. [11] first used stereo pairs to train depth network
with known disparities between left and right images and acquired great performance. Inspired by the authors
of [11], Godard et al. [12] designed a novel loss function which enforced both left-right and right–left disparities
consistency produced from stereo images [12]. Zhan et al. [13] extended the stereo-based network architecture
by increasing the visual odometry network (VO). The performance of Zhan’s network was superior to other
unsupervised methods at that time. To recover absolute scale depth map from stereo pairs, Li et al. [14] pro-
posed a visual odometry system (UnDeepVO), which was capable of estimating the 6-DoF camera pose and
recovering the absolute depth value.

2.2.2. Unsupervised depth estimation from monocular images
For monocular depth estimation, it is necessary to design an extra pose network to obtain pose transformation
between consecutive frames. Both depth and pose networks are trained together with loss function. Zhou
et al. [16] pioneered the training of depth networks with monocular video. They proposed two separate net-
works (SfMLearner) to learn image depth and inter-frame pose transformation. However, the accuracy of
the depth network was often limited by the influence of moving objects and occlusion. Their work motivated
some researchers to consider these shortcomings. Subsequently, Casser et al. [17] developed a separate network
(struct2depth) to learn each moving object motion, but their work was based on the condition that the num-
ber of moving objects needed to be hypothesized in advance. In addition, researchers found that the optical
flow method could be employed to deal with moving object motion. Yin et al. [18] developed a cascading net-
work framework (GeoNet) to adaptively learn rigid and non-rigid object motion. Recently, multi-task training
methods have been proposed. Luo et al. [19] intended to train depth, camera pose, and optical flow networks
(EPC++) jointly with 3D holistic understanding. Similarly, Ranjan et al. [24] proposed a competitive collabora-
tion mechanism (CC) with depth, camera motion, optical flow, and motion segmentation together. Both Luo
and Ranjan’s joint network inevitably increased the difficulty of the training network and the computational
burden of the network.

From the above works, we can see that most studies aim to improve the accuracy of the depth network by
changing the network structure or building robust supervisory signal. It is worth noting that these methods
bring network complexity and computational burden while improving the network accuracy. This motivates
us to study how to balance both sides. Poggi et al. [15] presented an effective pyramid feature extraction net-
work, which can be implemented in real-time on CPU. However, the accuracy of the network cannot satisfy
the requirements of practical applications. Xie et al. [20] provided a template with aggregated residual trans-
formations (ResNeXt), which achieved a better classification result without increasing network computation.
Because of the advantages of ResNeXt, we apply it to the image depth prediction field. The ResNeXt block
serves as a feature extraction module of the depth network to learn the image’s high-dimensional features.
The proposed approach is not only independent of depth ground truth, but also does not increase computa-
tional burden.

3. METHOD
Theproposedmethod contains two parts: an end-to-end network framework and a loss function. The network
framework consists of a depth network and a pose network, as shown in Figure 2. Given unlabeled monocular
sequences, the depth network outputs the predicted depth map, while the pose network outputs the 6-DoF
relative pose transformation between adjacent frames. The loss function is made up of the basic photometric
loss and the depth smoothness loss, and it couples both networks into the end-to-end network.
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Figure 2. The overall architecture of both the depth network and the pose network.

Figure 3. The architecture of ResNet and ResNeXt block: (a) the ResNet block; and (b) the aggregated residual transformations. Both have
similar complexity, but the ResNeXt block has better adaptability and expansibility.

3.1. Problem statement
The aim of the unsupervised monocular depth network is to develop a mapping relationship Γ : 𝐼 (𝑝) → 𝐷 (𝑝),
where 𝐼 (𝑝) is an arbitrary image, 𝐷 (𝑝) is the predicted depth map of the image 𝐼 (𝑝), and 𝑝 is per pixel in the
image 𝐼 (𝑝). Establishing a more accurate mapping function Γ is considered in this paper, which includes:
(a) a simple and effective network pipeline without increasing network computational complexity; and (b) a
high-quality depth map 𝐷 (𝑝) with subtle details for a given input image 𝐼 (𝑝).

For Item (a), our focus is to change the basic building blocks of the depth CNN structure using aggregated
residual transformations (ResNeXt). In the depth network, ResNeXt serves as feature extraction module to
learn the image’s high-dimensional features without increasing network computational burden. For Item (b),
low-texture regions in the low-scale depth map are weakened, bringing inaccurate image reconstruction. In-
spired by the authors of [22], four images with full resolution are reconstructed instead of building four images
with different resolutions. Before the four images are reconstructed, the predicted four-scale depth map needs
to be resized to the same resolution as input image with bilinear interpolation.

A single image 𝐼 (𝑝) is considered as the input of the depth network. The designed depth network outputs five-
scale feature map 𝐹𝑘×(𝑘 ∈ 1, 2, 3, 4, 5) in the encoder network and four-scale depth map 𝐷𝑛 in the decoder
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network. The mapping function is designed as

𝐷𝑛×(𝐼 (𝑝)) = Γ𝑛 ((𝐹1×(𝐼 (𝑝), . . . , (𝐹𝑚×(𝐼 (𝑝)))) (1)

where 𝑚 denotes the number of feature maps, 𝑚 = 5. 𝑛 represents the scale factor of depth map, 𝑛 ∈ 0, 1, 2, 3.
𝑘 denotes the resolution of feature map 𝐹𝑘× is 1/2𝑘 of the input resolution.

Then, bilinear interpolation is applied to each predicted depth map 𝐷𝑛× to acquire the full-resolution depth
map 𝑅(𝐼 (𝑝)), which is defined as follows:

𝑅(𝐼 (𝑝)) = 𝑈𝐷𝑛×(𝐼 (𝑝)) (2)

where𝑈 represents bilinear interpolation which recovers the resolution 1/2𝑛 of 𝐷𝑛× to the input full resolution.

The full-resolution depth map 𝑅(𝐼 (𝑝)) is necessary to reconstruct the input image. Given two adjacent images
with a target view and a source view ⟨𝐼𝑡 (𝑝), 𝐼𝑠 (𝑝)⟩, and the predicted 6-DoF pose transformation 𝑇 , a pixel in
the target image 𝑝𝑡 ’s mapping homogeneous coordinate 𝑝𝑠→𝑡 in the source image 𝐼𝑠 is computed as

𝑝𝑠→𝑡 ∼ 𝐾𝑇𝑡→𝑠𝑅(𝑝𝑡)𝐾−1𝑃𝑡 (3)

where 𝐾 is camera intrinsic matrix, 𝑝𝑡 is set as the normalized coordinate in target image 𝐼𝑡 , and 𝑇𝑡→𝑠 is a 4×4
matrix transformed by 𝑇 .

Therefore, the reconstructed target image 𝐼 𝑡𝑠 can be obtained by Equation (3) using differentiable bilinear sam-
pling mechanism [16] to sample the corresponding pixel 𝑝𝑠→𝑡 on the source image 𝐼𝑠. The reconstructed target
image 𝐼 𝑡𝑠 is used to calculate the photometric loss in Part D.

3.2. Feature extraction module
Equation (1) is applied to exploit higher-dimensional features and acquire feature map 𝐹𝑘× with more de-
tails. Since the ResNeXt block has a great performance on classification task. the feature extraction module is
constructed by the ResNeXt block. In contrast to the ResNet used in most depth CNNs, the ResNeXt block
aggregates more image features without bringing more network parameters, as shown in Figure 3.

The ResNeXt block puts the input image into 32 parallel groups and learns the image features, respectively.
Each group shares the same super-parameters and is designed as a bottleneck structure which cascades three
convolution layers with the kernel sizes, respectively, being 1 × 1, 3 × 3, and 1 × 1. The first 1 × 1 convolution
layer extracts high-dimensional abstract features by reducing (or increasing) output channels. Given an input
image 𝐼 with 𝐻 ×𝑊 ×𝐶′ resolution, the transformation function 𝑇𝑖 of the 𝑖th group maps image 𝐼 to the high-
dimensional feature map 𝑇𝑖 (𝐼). The aggregated output 𝑓 (𝐼) is the summation of the output of all the groups,
which is defined as follows:

𝑓 (𝐼) =
𝐶∑
𝑖=1
𝑇𝑖 (𝐼) (4)

where 𝐶 is the number of groups, 𝐶 = 32, with 𝐶 as cardinality.

Then, to be closely connected with the input, a residual operation is used, 𝐹 (𝐼). The aggregated output feature
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map for each module is

𝐹 (𝐼) = 𝐼 +
𝐶∑
𝑖=1
𝑇𝑖 (𝐼) (5)

3.3. Network architecture
The proposed depth estimation network employs U-Net structure including an encoder network and a de-
coder network. The encoder network is built by embedding the ResNeXt block [20]. It transforms the three-
dimensional monocular image into multi-channel feature map. The decoder network builds the relationship
between extracted feature map and the depth map by a series of upsample and convolution (Up-convolution)
operations, as shown in Figure 4.

(1) To eliminate texture copy artifacts in the depth map, the Up-convolution operation [22] instead of deconvo-
lution is used to reshape the feature map. (2) Due to max-pooling and stride operations ignoring some local
features and causing some details to be lost in the depth image, skip connections are used to merge the corre-
sponding feature maps for encoder network into decoder network and obtain fine image details. (3) Inspired
by the authors of [22], we resize all depth maps to the same resolution as input using bilinear interpolation
(represented by the𝑈 operation in Equation (2)).

The structure for the pose network is designed as a standard ResNet18 encoder, which is similar to the one
in [22]. More input images in the pose network bring more accurate depth estimation under certain conditions.
However, to reduce the number of training parameters of pose network, the pose network has 𝑁 (𝑁 = 3)
adjacent images as input. Therefore, the shape for convolutional weights in the first layer is (3×𝑁) ×64×3×3
rather than the default 3 × 64 × 3 × 3 in the pose network. The output of the pose network has 6 ∗ (𝑁 − 1)
channels. In addition, our pose network is trained without pre-training. All convolution layers are activated
by ReLU function [25] except for the last layer. When the pose result is evaluated, an image pair is fed into
pose network to produce six output channels, the first three-channel is rotation, and the last three-channel is
translation.

3.4. Wavelet SSIM loss
In general, the SSIM [26] loss is included in the photometric loss to measure the degree of similarity between
images. In this paper, the 2D discrete wavelet transform (DWT) is applied to SSIM to decrease the photomet-
ric loss. Firstly, The DWT divides an image into some patches with different frequencies. Then, the SSIM of
each patch is computed. To preserve high-frequency image details and avoid producing “holes” or artifacts in
some low-texture regions, it can flexibly adjust the weights of each patch of SSIM loss.

In the 2D discrete wavelet transform (DWT), low-pass and high-pass filters are performed on an image to
obtain the convolution results. For instance, four filters, 𝑓𝐿𝐿 , 𝑓𝐿𝐻 , 𝑓𝐻𝐿 , and 𝑓𝐻𝐻 , are obtained by the low-
pass filter multiplying the high-pass filter. The DWT divides an image into four small patches with different
frequencies through these four filters, which can remove unnecessary interference from the images (𝑒.𝑔., haze
and rain). Iteratively, the DWT can be formulated as follows:

𝐼𝐿𝐿𝑖+1, 𝐼
𝐿𝐻
𝑖+1 , 𝐼

𝐻𝐿
𝑖+1 , 𝐼

𝐻𝐻
𝑖+1 = 𝐷𝑊𝑇 (𝐼𝐿𝐿𝑖 ) (6)

where 𝑖 is the iterative time of DWT. 𝐼𝐿𝐿0 is the original image. In this paper, 𝑖 = 2. 𝐼𝐿𝐿 is the down-sampling
image. 𝐼𝐻𝐿 and 𝐼𝐿𝐻 are the horizontal and vertical edge detection images, respectively. 𝐼𝐻𝐻 is the corner de-
tection image.
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Figure 4. The proposed depth network architecture. The width and height of every cube indicates output channels, and the size is reduced
by half every time. The first yellow cube is a convolution block, while the rest of the yellow cubes are ResNeXt blocks. The orange blocks
represent the five-scale feature map, 𝐹𝑘×. In the decoder network, convolution layers are blue. Upsample and convolution operations are
red. 𝐷𝑛× is the four-scale depth map.

To preserve high-frequency image details and avoid producing image artifacts, a coarse-to-fine manner is
adopted to change the image resolution in the SSIM loss. The DWT divides the image into four patches:
𝐼𝐿𝐿𝑖 , 𝐼𝐻𝐿𝑖 , 𝐼𝐿𝐻𝑖 , 𝑎𝑛𝑑𝐼𝐻𝐻𝑖 . Except the low-frequency 𝐼𝐿𝐿𝑖 , the SSIM loss of the other three high-frequency patches
are computed. Iteratively, 𝐼𝐿𝐿𝑖 is divided by DWT to generate different patches to obtain the new SSIM loss.
Therefore, the total wavelet SSIM (W-SSIM) loss is

𝐿𝑊−𝑆𝑆𝐼𝑀 (𝑡,𝑠) =
𝑖∑
0
𝑟𝑖𝐿𝑆𝑆𝐼𝑀 (𝑡𝑤𝑖 , 𝑠𝑤𝑖 ), 𝑤 ∈ {𝐿𝐿, 𝐻𝐿, 𝐿𝐻, 𝐻𝐻} (7)

The ratios of the four patches are

𝐼𝐿𝐿 : 𝐼𝐿𝐻 : 𝐼𝐻𝐿 : 𝐼𝐻𝐻 = 𝑟2 : 𝑟 (1 − 𝑟) : 𝑟 (1 − 𝑟) : (1 − 𝑟)2 (8)

where 𝑟𝑖 is the weight of each patch. The initial value of 𝑟 is 0.7. 𝑡 is the target image. 𝑠 is the source image.

Initially, before the DWT divides the image, the SSIM loss between the target image and source image is
calculated. The total wavelet SSIM (𝐿𝑊𝑆𝑆𝐼𝑀) loss is

𝐿𝑊𝑆𝑆𝐼𝑀 = 𝐿𝑆𝑆𝐼𝑀 (𝑡, 𝑠) + 𝐿𝑊−𝑆𝑆𝐼𝑀 (9)

3.5. Total loss function
There are two main parts in the loss function: the target image photometric loss 𝐿𝑝 is calculated by recon-
structing the target image, while the smoothness loss 𝐿𝑠 of depth image compels the predicted depth map to
be smooth, given the input target image 𝐼𝑡 and its reconstructed image 𝐼 𝑡𝑠. The details are shown in Equation
(3). To make the photometric loss effective and meaningful, some assumptions need to be set: (1) the scenes
are Lambertian; and (2) the scenes should be static and unsheltered.
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In general, the image photometric loss contains the structural similarity metric (SSIM) [26] and the regulariza-
tion loss 𝜁1. The wavelet SSIM loss is used to replace SSIM loss in photometric loss. Therefore, the image
photometric loss is defined as

𝑝𝑒 = 𝛼
1 − 𝐿𝑊𝑆𝑆𝐼𝑀 (𝐼𝑡 , 𝐼 𝑡𝑠)

2
+ (1 − 𝛼)



𝐼𝑡 − 𝐼 𝑡𝑠

1 (10)

where we empirically set 𝛼 = 0.85.

When computing the photometric loss from different source images, most previous approaches average the
photometric loss together into every available source images. However, the second assumption requests that
each pixel in the target image is also visible to the source image. However, this assumption is easily broken. It
is inevitable that some moving objects and occlusions exist in the scene; thus, some pixels are available in one
image but are not available in the next image. As a result, inaccurate pixel reconstruction and the photometric
error are caused. Following the work in [22], the minimum photometric loss at each pixel in the target image
is computed instead of the average photometric loss. Note that this method can only correct the photometric
loss but not eliminate it. Therefore, the final per-pixel photometric loss is

𝐿𝑝 = min
𝑡
𝑝𝑒(𝐼𝑡 , 𝐼 𝑡𝑠) (11)

In addition, the performance of depth network suffers from the influence ofmoving objects in the image. These
moving pixels should not be involved in computing the photometric loss. Therefore, a binary per-pixel mask
𝜇 in [22] is applied to automatically recognize moving pixels (𝜇 = 0) and static pixels (𝜇 = 1). The mask 𝜇 only
includes some pixels whose photometric error of the reconstructed image 𝐼 𝑡𝑠 is lower than that of the target
image 𝐼𝑡 and source image 𝐼𝑠. The mask 𝜇 is defined as

𝜇 = [min(𝑝𝑒(𝐼𝑡 , 𝐼 𝑡𝑠)) > min(𝑝𝑒(𝐼𝑡 , 𝐼𝑠))] (12)

[ ] is the Iverson bracket. The auto-masking photometric loss [22] is

𝐿𝑝 = 𝜇𝐿𝑝 (13)

The second-order gradients of the depth map are used to make the depth map smooth. Because the edge or
corner in the depth map should be less smooth than other flat regions, the gradient of the depth map should
be locally smooth rather than fully smooth. Therefore, a Laplacian [23] is applied to automatically perceive the
position of each pixel. Different from the method in [23], it is used at every scale instead of a specific scale. The
Laplacian template is second-order differencing with four neighborhoods. It can reinforce object edges and
weaken the region of slowly varying intensity. The smoothness loss of this pixel receives a lower weight when
the Laplacian is higher. The smoothness loss is defined as follows:

𝐿𝑠 = 𝑒
−∇2 𝐼 (𝑥𝑖) ( |𝜕𝑥𝑥𝑑𝑖 | + |𝜕𝑥𝑦𝑑𝑖 | + |𝜕𝑦𝑦𝑑𝑖 |) (14)

∇2 𝑓 =
𝜕2 𝑓

𝜕𝑥2 + 𝜕
2 𝑓

𝜕𝑦2 (15)

where ∇ is the Laplacian operator.

Therefore, the total loss function is
𝐿𝑡𝑜𝑡𝑎𝑙 = 𝜇𝐿𝑝 + 𝜆𝐿𝑠 (16)

The final total loss is averaged per pixel, batch, and scale.
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Table 1. The standard evaluation metrics for network
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4. EXPERIMENTS
To evaluate the effectiveness of our approach, some qualitative and quantitative results are provided about
depth and pose prediction. KITTI dataset is the main data source to train and test depth networks. The KITTI
odometry split was used to train and test our pose network. Meanwhile, the Make3D dataset was used to
evaluate the adaptive ability and generalization of the proposed network.

4.1. Implementation details
The proposed depth network has dense skip connections which can fully learn deep abstract features. The
network was trained from scratch without pre-training model weights and post-processing. The Sigmoid out-
put of depth map is 𝐷 = 1/(𝛼𝜎 + 𝛽), where 𝜎 and 𝛽 make the depth value 𝐷 between 0.1 and 100 units. In
our experiments, the MonoDepth2 [22] was set to standard ResNet50 encoder for monocular depth network,
ResNet18 for pose network, and without pre-training. Here, we simplify its name to MD2 for the rest of the
paper.

Deep learning framework PyTorch [27] was used to implement our model. For comparison, the KITTI dataset
was resized and downsampled to 640×192. The proposed network used Adam [28] optimizer with 𝛽1 = 0.9 and
𝛽1 = 0.999 to train 22 epochs. The batch size was set as 4 and the smoothness term 𝛾 was set to be 0.001. The
learning rate was set to be 10−4 for the first 20 epochs and reduced by a factor of 10 for the remaining epochs.
The settings for the pose network were the same as in [22]. In addition, a single NVIDIA GeForce TITAN X
with 12 GB GPU memory was used in our experiments.

4.2. Evaluation metrics
To evaluate our method, we used some standard evaluation metrics, as shown in Table 1.

|𝐼 | is the number of pixels in image 𝐼 . 𝑑𝑝𝑟𝑒𝑑𝑖 𝑗 is the predicted depth from model. 𝑑𝑔𝑡𝑖 𝑗 is the depth ground
truth. 𝛿𝑡 represents the threshold between the depth ground truth and the predicted depth, which is set to be
1.25, 1.252, and 1.253, respectively.

4.3. KITTI eigen split
The KITTI Eigen split [16] was used to train the proposed network. Before the network was trained, Zhou’s [16]

preprocessing was used to remove static images. As a result, the training dataset had 39,810 monocular triplets,
which contain 29 different scenes. The validation dataset had 4424 images, and there were 697 testing images.
The image depth ground truth of the KITTI dataset was captured by Velodyne laser. Following the work in [22],
the intrinsics of all images were same, the principal point of the camera was set as image center, and the focal
length was defined as the average of all focal lengths in the KITTI dataset. In addition, the depth predicted
results were obtained by using the per-image median ground truth scaling proposed in [16]. When the results
were evaluated, the maximum depth value was set to be 80 m and the minimum to be 0.1 m.
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Figure 5. Qualitative results on the KITTI Eigen split. The results are compared with some existing unsupervised methods.

Figure 5 shows some visual examples of predicted depth maps. Our proposed model in the last row generates
higher quality depth maps and gets clearer object edges than the other models. Some quantitative results are
also provided in Table 2. The evaluation metrics are defined in Table 1. For the first four indices, lower scores
are better. For the last three indices, higher scores are better. In Table 2, all results are shown without post-
processing [12]. The last row is the predicted result of our proposed method. The accuracy of depth prediction
is improved when compared with other methods trained on monocular images. It is demonstrated that the
proposed method is effective. Generally, the fewer input images in the pose network have a negative impact
on the accuracy of the depth network. Even though only three frames are used to train the pose network at
a time, our depth prediction results still outperform the other methods. Note that, some methods in Table
2 [18,19,24] were trained with multiple tasks.

4.4. Additional study
4.4.1. Make3D dataset
The collected scene of the Make3D dataset is different from the KITTI dataset. Therefore, the Make3D dataset
is often used to evaluate the adaptability of a network model. Our depth model trained on the KITTI dataset
was tested on the Make3D dataset to evaluate its adaptability. The qualitative results are shown in Figure 6.
The second column is the depth ground truth. Compared with MD2 [22], the visual results of our model can
get the global scene information and capture more object details. It can be seen that our method is useful and
has great scene adaptability.
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Table 2. The quantitative results. This table shows the results of our method and other existing methods on KITTI Eigen split [16]. The
best results in every category are in bold. M denotes the training dataset is monocular. * represents the newer results from GitHub

Lower is better Higher is better

Method Train AbsRel SqRel RMSE logRMSE 𝛿 < 1.25 𝛿 < 1.252 𝛿 < 1.253

Zhou* [16] M 0.183 1.595 6.709 0.270 0.734 0.902 0.959
Yang [29] M 0.182 1.481 6.501 0.267 0.725 0.906 0.963
Mahjourian [30] M 0.163 1.240 6.220 0.250 0.762 0.916 0.968
GeoNet* [18] M 0.149 1.060 5.567 0.226 0.796 0.935 0.975
DDVO [23] M 0.151 1.257 5.583 0.228 0.810 0.936 0.974
DF-Net [31] M 0.150 1.124 5.507 0.223 0.806 0.933 0.973
LEGO [32] M 0.162 1.352 6.276 0.252 - - -
Ranjan [24] M 0.148 1.149 5.464 0.226 0.815 0.935 0.973
EPC++ [19] M 0.141 1.029 5.350 0.216 0.816 0.941 0.976
Struct2depth [17] M 0.141 1.026 5.291 0.215 0.816 0.945 0.979
MD2 [22] M 0.131 1.023 5.064 0.206 0.849 0.951 0.979
Ours M 0.125 0.992 5.076 0.203 0.858 0.953 0.979

Input Ground truth MD2 Ours

Figure 6. Some predicted depth examples on the Make3D dataset. The models were all trained on KITTI only, monocular, and directly
tested on Make3D.

Table 3. Ablation studies on ResNeXt and 𝐿𝑊𝑆𝑆𝐼𝑀

Lower is better Higher is better

Method Train AbsRel SqRel RMSE logRMSE 𝛿 < 1.25 𝛿 < 1.252 𝛿 < 1.253

Basic [22] M 0.131 1.023 5.064 0.206 0.849 0.951 0.979
Basic+ ResNeXt M 0.127 0.990 5.109 0.205 0.854 0.950 0.978
Basic+ResNeXt+𝐿𝑊𝑆𝑆𝐼𝑀 M 0.125 0.992 5.076 0.203 0.858 0.953 0.979
Basic+ResNeXt+𝐿𝑊𝑆𝑆𝐼𝑀 (single scale) M 0.123 0.980 4.987 0.200 0.862 0.954 0.979

4.4.2. Validating proposed ResNeXt and 𝐿𝑊𝑆𝑆𝐼𝑀
Table 3 shows the result of depth prediction for different components of the proposed method. “Basic” is the
MD2 mentioned above. The results clearly prove that the contributions of our proposed terms to the overall
performance. It is evident that discrete wavelet transform (DWT) can recover a high-quality clear image and
improve the accuracy of depth prediction. The accuracy of depth prediction for both single-scale and multi-
scale supervisions are shown. Compared with the multi-scale method, the result of the single-scale method is
better. The reason for this phenomenon is hypothesized to be that the low-resolution image has over-smoothed
pixel color, which can easily cause inaccurate photometric loss.
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Table 4. Model capacity. 𝑝𝑎𝑟𝑎𝑚𝑠 is the number of parameters of depth network, 𝑡𝑜𝑡𝑎𝑙𝑝𝑎𝑟𝑎𝑚𝑠 indicates the total parameters for both
depth and pose network, and 𝑀 is million unit.

Method Params FLOPs Total params

MD2(ResNet50) [22] 25.56M 1.0𝑥1010 61.8M
ours 25.03M 1.0𝑥1010 61.3M

Table 5. Odometry results on the KITTI odometry dataset

Method Sequence09 Sequence10 Frames

ORB-SLAM [33] 0.014 ± 0.008 0.012 ± 0.011 -
DDVO [26] 0.045 ± 0.108 0.033 ± 0.074 3
Zhou* [16] 0.05 ± 0.039 0.034 ± 0.028 5→2
Mahjourian [30] 0.013 ± 0.010 0.012 ± 0.011 3
GeoNet [18] 0.012 ± 0.007 0.012 ± 0.009 5
EPC++(M) [19] 0.013 ± 0.007 0.012 ± 0.008 3
Ranjan [24] 0.012 ± 0.007 0.012 ± 0.008 5
MD2(M) 0.018 ± 0.009 0.015 ± 0.010 2
ours 0.017 ± 0.010 0.015 ± 0.010 2

4.4.3. Network capacity
To show our proposed network can improve accuracy without increasing network capacity, the number of
network parameters and the floating-point operations per second (𝐹𝐿𝑂𝑃𝑠) for the network were computed
to evaluate the capacity of the proposed network. The quantitative results are shown in Table 4. For the sake
of fair comparison, the pose network of MD2 and ours were set as ResNet50. Note that ResNet50 serves as
our pose network only for comparison. The pose network adopted in the proposed overall framework is still
ResNet18. Compared with MD2, our proposed method improves the accuracy of the depth network without
adding extra computational burden, as expected.

4.5. Pose estimation
Our pose model was evaluated on the standard KITTI odometry split [16]. This dataset includes 11 driving
sequences. Sequences 00–08 were used to train our pose network without using pose ground truth, while Se-
quences 09 and 10 were used to evaluate our pose model. The average absolute trajectory error with standard
deviation (in meters) was used as evaluation metric. Godard’s [22] handling strategy was followed to evaluate
the result of the two-framemodel on the five-frame snippets. Because Godard’s [22] pose estimation results (M,
ResNet50 for depth network, and ResNet18 for pose network) are not provided, we retrained and obtained the
trained result (MD2).

Only two adjacent frames were taken in our pose model at a time, as shown in Table 5. The output was the
relative 6-DoF pose between images. Even though our pose network structure is the same as that in MD2, our
pose model obtains better performance than MD2. In addition, the results are comparable to other previous
methods. Thus, it is observed that the proposed depth network has a positive effect on pose network.

5. CONCLUSIONS
A versatile end-to-end unsupervised learning framework of monocular depth and pose estimation is devel-
oped and evaluated on a dataset in this paper. Aggregated residual transformations (ResNeXt) are embedded
in depth network to extract the input image’s high-dimensional features. In addition, the proposed wavelet
SSIM loss is based on 2D discrete wavelet transform (DWT). Different patches with different frequencies are
computed by DWT as the input to the SSIM loss to converge the network, which can recover high-quality clear
image patches. The evaluation results show that the performance of depth prediction is improved while the
computational burden is reduced. In addition, the proposed method has great adaptive ability on the Make3D
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dataset and can decrease the domain gap between different datasets. In future work, how to further optimize
the whole system will be considered.
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