Supplementary Material

Investigation of dual atom doped single-layer MoS₂ for electrochemical reduction of carbon dioxide by first-principle calculations and machine-learning

Huidong Li, Chaofang Deng, Fuhua Li, Mengbo Ma, Qing Tang*

School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, China.

*Correspondence to: Dr. Tang Qing, School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, No. 55, South University City Road, Shapingba District, Chongqing 401331, China. E-mail: qingtang@cqu.edu.cn. The formation formula of each C1 product, the zpe-point energy (ZPE), the entropy change (TS), adsorption structures of different CO₂RR intermediates on MoS₂, computed Gibbs free energies of every CO₂RR intermediates, the changes in the reaction free energy (Δ G), the density of states (DOS) of *CO and Calculation of adsorption free energy of key intermediates, Gibbs free energy of adsorbed water, and water dissociation.

The scaling relations of transition metal surfaces were mainly reported by Norskov et al, the adsorption energies of *COOH, *CO and *CHO were calculated in order to compare the scaling relations of dual atom catalysts with that of transition-metals. Based on Nørskov *et al.*'s theory^[1], the adsorption energies of *COOH, *CO, and *CHO were calculated with the following equations:

$$E_{ads}(COOH) = E(*COOH) - E(*H_2O) - E(CO_2(g)) - 1/2 E(H_2)$$

$$E_{ads}(CO) = E(*CO) - E(*H_2O) - E(CO(g))$$

$$E_{ads}(CHO) = E(*CHO) - E(*H_2O) - E(CO(g)) - 1/2 E(H_2)$$

Where $E_{ads}(COOH)$, $E_{ads}(CO)$ and $E_{ads}(CHO)$ are the adsorption energies of *COOH, *CO, and *CHO, respectively. In particular, $E(*H_2O)$ represents the adsorption energy of the water molecule.

The mechanism of CO₂ reduction is: The formula for HCOOH formation:

$$CO_2 + H^+ + e^- \to *HCOO \tag{1}$$

*HCOO + H⁺ + e⁻
$$\rightarrow$$
 *HCOOH (2)

*HCOOH
$$\rightarrow$$
 HCOOH + * (3)

The formula for CO formation:

$$\text{CO}_2 + \text{H}^+ + e^- \rightarrow \text{*COOH}$$
 (4)

$$*COOH + H^+ + e^- \rightarrow *CO + H_2O \tag{5}$$

$$*CO \rightarrow CO + * \tag{6}$$

The formula for HCHO formation:

$$*CO + H^+ + e^- \rightarrow *CHO \tag{7}$$

*CHO + H⁺ + e⁻
$$\rightarrow$$
 *OCH₂ (8)

$$*OCH_2 \rightarrow HCHO + *$$
 (9)

The formula for CH₃OH formation:

$$*OCH_2 + H^+ + e^- \rightarrow *OCH_3 \tag{10}$$

$$*OCH_3 + H^+ + e^- \rightarrow *CH_3OH$$
(11)

$$*CH_3OH \rightarrow CH_3OH + *$$
(12)

The formula for CH₄ formation:

$$*OCH_3 + H^+ + e^- \rightarrow *OCH_4$$
(13)

$$*OCH_4 + H^+ + e^- \rightarrow *O + CH_4$$
(14)

$$*O + H^+ + e^- \rightarrow *OH \tag{15}$$

$$*OH + H^+ + e^- \rightarrow *H_2O \tag{16}$$

$$*H_2O \rightarrow H_2O + * \tag{17}$$

Supplementary Figure 1. Optimized structures of 6 homonuclear MoS_2 - M_2 and 15 heteronuclear MoS_2 - M_1M_2 with adsorbed water molecule.

Supplementary Figure 2. The most stable structure of *CO₂ adsorbed on 6 homonuclear and 15 heteronuclear DACs. The numbers in the figure indicate their adsorption energies.

Supplementary Figure 3. Optimized geometries of *COOH, *CO and *CHO adsorbed on MoS₂-M₂/M₁M₂ DACs.

Supplementary Figure 4. The projected density of states of MoS₂-NiCr and MoS₂-CrCo systems after CO adsorption.

Supplementary Figure 5. Optimized intermediate structures along all possible CO₂RR pathways towards various C1 products on (A) MoS₂-NiCr and (B) MoS₂-CrCo.

Supplementary Figure 6. The correlation between different factors (R, Ne, P, I, A, d_{M-M} and d_{M-M_0}).

Supplementary Table 1. Free energy corrections for gas molecules (H₂, CO, CO₂, H₂O, CH₄, CH₃OH, HCOOH, HCHO) (In addition, we added -0.34 eV corrections for CO and +0.10 eV corrections for CO₂ due to the inaccurate description of CO₂ and CO molecules by the PBE function.)

Molecule	E*	Ezpe	TS	G
CO ₂	-5128.69	0.31	0.66	-5129.94
CO	-3081.13	0.13	0.61	-3081.95
H ₂	-31.57	0.27	0.4	-31.70
H ₂ O	-2077.99	0.57	0.67	-2078.09
нсоон	-5160.27	0.9	0.99	-5160.36
нсно	-3113.51	0.72	0.68	-3113.47
СН₃ОН	-3146.32	1.38	0.81	-3145.75
CH ₄	-1100.77	1.2	0.58	-1100.15

Species	E _f (eV)	Species	E _f (eV)
Cu ₂	-4.97	FeNi	-6.05
Fe ₂	-6.00	FeMn	-5.62
Ni ₂	-6.12	FeCr	-5.46
Mn ₂	-5.28	FeCo	-6.12
Cr ₂	-4.92	NiMn	-5.71
C02	-6.16	NiCr	-5.29
CuFe	-5.46	NiCo	-6.16
CuNi	-5.54	MnCr	-5.11
CuMn	-5.14	MnC	-5.74
CuCr	-4.97	CrCo	-5.58
CuCo	-5.49		

Supplementary Table 2. The formation energies of metal dimers embedded in MoS₂.

~ •					
Species	$\Delta G(*CO_2)$	$\Delta G(*H_2O)$	Species	$\Delta G(*CO_2)$	$\Delta G(*H_2O)$
Cu ₂	0.17	-0.73	FeNi	-0.48	-0.85
Fe ₂	-0.68	-0.75	FeMn	-0.78	-0.86
Ni ₂	-0.17	-0.75	FeCr	-0.89	-1.08
Mn ₂	-0.74	-1.16	FeCo	-0.63	-0.86
Cr ₂	-1.14	-1.17	NiMn	-0.41	-1.05
C02	0.00	-1.04	NiCr	-0.67	-1.01
CuFe	-0.43	-0.98	NiCo	-0.51	-1.00
CuNi	-0.21	-0.73	MnCr	-0.93	-0.86
CuMn	-0.33	-1.03	MnCo	-0.77	-1.13
CuCr	-0.51	-0.81	CrCo	-0.96	-1.10
CuCo	-0.51	-0.88			
			1		

Supplementary Table 3. Comparison of Gibbs adsorption free energies of adsorbed CO₂ and adsorbed water molecule.

Species	G(*H2O)	G(*H + *OH)	ΔG
Cu ₂	-380801.58	-380800.52	1.07
Fe ₂	-376487.64	-376487.18	0.46
Ni ₂	-379224.26	-379223.39	0.87
Mn ₂	-375322.20	-375321.44	0.76
Cr ₂	-374311.35	-374311.02	0.33
Co ₂	-377772.33	-377771.54	0.79
CuFe	-378644.80	-378644.33	0.47
CuNi	-380012.90	-380011.85	1.06
CuMn	-378062.01	-378061.45	0.56
CuCr	-377556.37	-377556.09	0.28
CuCo	-379286.78	-379286.44	0.34
FeNi	-377856.04	-377855.41	0.63
FeMn	-375904.79	-375904.44	0.35
FeCr	-375399.62	-375399.33	0.29
FeCo	-377130.04	-377129.56	0.48
NiMn	-377273.35	-377272.68	0.67
NiCr	-376767.40	-376766.83	0.57
NiCo	-378498.44	-378497.41	1.04
MnCr	-374816.51	-374816.17	0.34
MnCo	-376547.34	-376546.74	0.60
CrCo	-376041.90	-376041.30	0.60

Supplementary Table 4. The reaction free energy for the dissociation of adsorbed H₂O into H* and OH*.

Species	E _{ads} (*COOH)	E _{ads} (*CO)	E _{ads} (*CHO)		
Cu ₂	-0.22	-1.44	-0.69		
Fe ₂	-0.60	-1.68	-1.18		
Ni ₂	-0.29	-1.87	-0.91		
Mn ₂	0.03	-1.02	0.59		
Cr ₂	-0.22	-1.34	-0.95		
C02	-0.34	-1.77	-1.32		
CuFe	-0.29	-1.38	-0.39		
CuNi	-0.19	-1.43	-0.78		
CuMn	-0.04	-1.05	-0.39		
CuCr	-0.55	-1.44	-0.61		
CuCo	-0.36	-1.41	-0.73		
FeNi	-0.58	-1.91	-1.02		
FeMn	-0.81	-1.70	-1.19		
FeCr	-0.48	-1.39	-0.79		
FeCo	-0.68	-2.14	-1.04		
NiMn	0.12	-1.05	-0.74		
NiCr	-0.66	-2.01	-1.75		
NiCo	-0.56	-1.92	-1.22		
MnCr	-0.83	-1.29	-0.98		
MnCo	-0.21	-1.11	-0.79		
CrCo	-0.48	-1.14	-1.12		

Supplementary Table 5. The adsorption energies of intermediates (*COOH, *CO, *CHO).

Supplementary Table 6. The detailed electronic energy (E*), zero-point energy (E_{ZPE}), entropy corrections (TS), free energy (G), and Gibbs free energy change (ΔG) of critical intermediate on MoS₂-NiCr and MoS₂-CrCo during electrochemical CO₂RR.

E*(MoS ₂ -NiCr)	Absorbate	E*ads	Ezpe	TS	G	ΔG
374688.30	*H ₂ O	376767.99	0.68	0.08	376767.40	-1.01
	*CO ₂	381897.51	0.31	0.12	381897.32	-0.98
	*СООН	381913.12	0.58	0.14	381912.69	0.48
	*CO	379851.13	0.20	0.04	379850.97	-0.52
	*СНО	379866.66	0.47	0.08	379866.26	0.56
	*СОН	379865.35	0.47	0.05	379864.93	1.89
	*OCH ₂	379882.73	0.79	0.10	379882.04	0.07
	*СНОН	379882.03	0.78	0.10	379881.35	0.76
	*OCH ₃	379900.01	1.10	0.08	379898.99	-1.10
	*CH ₂ OH	379899.62	1.20	0.12	379898.54	-0.65
	* O + CH ₄ (g)	378815.34	0.08	0.05	378815.31	-0.62
	*CH ₃ OH	379915.57	1.44	0.12	379914.25	0.59
	*OH	378831.53	0.38	0.06	378831.21	-0.05
	*H ₂ O	378847.06	0.67	0.10	378846.48	0.58
	*HCOO	381914.19	0.64	0.19	381913.74	-0.57
	*HCOOH	381929.36	0.89	0.22	381928.68	0.91
	*H	376784.26	0.19	0.01	376784.07	-0.82

E*(MoS ₂ -CrCo)	Absorbate	E*ads	Ezpe	TS	G	ΔG
373962.71	*H ₂ O	376042.44	0.67	0.13	376041.90	-1.10
	*CO2	381171.68	0.31	0.16	381171.53	-0.68
	*СООН	381187.40	0.62	0.15	381186.94	0.44
	*C0	379124.71	0.16	0.16	379124.70	-0.01
	*СНО	379140.48	0.46	0.11	379140.13	0.43
	*СОН	379139.44	0.47	0.11	379139.08	1.48
	*OCH ₂	379156.98	0.78	0.05	379156.24	-0.27
	*СНОН	379156.24	0.77	0.13	379155.59	0.38
	*OCH ₃	379173.75	1.10	0.08	379172.73	-0.63
	*CH ₂ OH	379171.96	1.05	0.09	379170.99	1.43
	*O + CH ₄ (g)	378089.34	0.07	0.04	378089.31	-0.88
	*CH ₃ OH	379190.01	1.43	0.22	379188.80	-0.22
	*OH	378105.34	0.35	0.11	378105.11	0.05
	*H ₂ O	378121.27	0.68	0.07	378120.67	0.29
	*HCOO	381187.92	0.58	0.16	381187.49	-0.11
	*НСООН	381204.04	0.92	0.18	381203.30	0.04
	*H	376058.36	0.18	0.01	376058.20	-0.45

Structure	ΔG(*H ₂ O)	ΔG(*CO ₂)	ΔG(*H)	
Cu ₂	-0.73	-0.73	-0.63	
Fe ₂	-0.75	-0.84	-0.86	
Ni ₂	-0.75	-0.63	-0.49	
Mn ₂	-1.16	-0.58	0.30	
Cr ₂	-1.17	-0.63	0.08	
C02	-1.04	-0.60	-0.66	
CuFe	-0.98	-0.74	-0.62	
CuNi	-0.73	-0.69	-0.66	
CuMn	-1.03	-0.50	-0.56	
CuCr	-0.81	-0.88	-0.79	
CuCo	-0.88	-0.71	-0.63	
FeNi	-0.85	-0.80	-0.70	
FeMn	-0.86	-0.68	-0.72	
FeCr	-1.08	-0.55	-0.26	
FeCo	-0.86	-0.80	-0.83	
NiMn	-1.05	-0.61	-0.25	
NiCr	-1.01	-0.98	-0.82	
NiCo	-1.00	-0.65	-0.45	
MnCr	-0.86	-0.78	-0.72	
MnCo	-1.13	-0.45	-0.32	
CrCo	-1.10	-0.68	-0.45	

Supplementary Table 7. Comparison of adsorption energy of *H₂O, *CO₂ and *H.

Supplementary Table 8. Summarises the distance between two metal atoms (d_{M-M} , Å), the average distance between two metal atoms and Mo atoms (d_{M-Mo} , Å), the radii of two metal atoms (R_1 and R_2 , pm), the number of outer electrons of two metal atoms (Ne₁ and Ne₂), the Pauling electronegativity of two metal atoms (P_1 and P_2), the first ionisation energy of two metal atoms (I_1 and I_2 , aJ) and the electron affinity energy of two metal atoms (A_1 and A_2 , kJ/mol).

Catalys	R1	Ne	P 1	T.	A1	d _{M-}	d _{М-М}	Ra	Ne	Pa	L	4.2
t	IV1	1	* 1	1	111	м	0	112	2	12	12	112
CuCu	12	11	1.	745.	118.	2 72	2.65	12	11	1.	745.	118.
CuCu	8	11	9	4	3	2.12	2.05	8	11	9	4	3
FeFe	12	8	1.	759.	44	2.61	2 64	12	8	1.	759.	44
	6	0	8	3		2.01	2.04	6	0	8	3	
NiNi	12	10	1.	736.	156	2 61	2 56	12	10	1.	736.	156
	5	10	9	7	100	2.01	2.30	5	10	9	7	100
MnMn	13	7	1.	717.	-94	3.16	2.66	13	7	1.	717.	-94
	7	,	5	4		0.10		7		5	4	2.
CrCr	12	6	1.	652.	94	3.17	2.78	12	6	1.	652.	94
	9		6	7				9		6	7	
CoCo	12	9	1.	760	102	2.73	2.57	12	9	1.	760	102
	5		9					5		9		
CuFe	12	11	1.	745.	118.	2.70	2.63	12	8	1.	759.	44
	8		9	4	3			6		8	3	
CuNi	12	11	1.	745.	118.	2.71	2.56	12	10	1.	736.	156
	8		9	4	3			5		9	7	
CuMn	12	11	1.	745.	118.	2.97	2.65	13	7	1.	717.	-94
	8		9	4	3			7		5	4	
CuCr	12	11	1.	745.	118.	2.97	2.70	12	6	1.	652.	94
	8		9	4	3			9		6	7	
CuCo	12	11	1.	745.	118.	2.66	2.60	12	9	1.	760	102
	8		9	4	3			5		9		
FeNi	12	8	1.	759.	44	2.58	2.59	12	10	1.	736.	156
	6		8	3				5		9	7	
FeMn	12	8	1.	759.	44	2.73	2.65	13	7	1.	717.	-94

	6		8	3				7		5	4	
FeCr	12	8	1.	759.	44	2.97	2.71	12	6	1.	652.	94
	6		8	3		2.97	2.,1	9		6	7	
FeCo	12	8	1.	759.	44	2.49	2.63	12	9	1.	760	102
1000	6		8	3		2.19	2.05	5		9	100	102
NiMn	12	10	1.	736.	156	2 78	2 61	13	7	1.	717.	-94
	5	10	9	7	100	2.70	2.01	7		5	4	
NiCr	12	10	1.	736.	156	2 53	2 60	12	6	1.	652.	94
inci	5	10	9	7	150	2.00	2.00	9		6	7	
NiCo	12	10	1.	736.	156	2 53	2 60	12	9	1.	760	102
i ii cu	5	10	9	7	150	2.00	2.00	5		9	/00	102
MnCr	13	7	1.	717.	-94	3 17	2 73	12	6	1.	652.	94
which	7		5	4		5.17	2.15	9		6	7	
MnCo	13	7	1.	717.	-94	2 78	2 65	12	9	1.	760	102
Mileo	7	/	5	4		2.70	2.05	5		9	/00	102
CrCo	12	6	1.	652.	94	2.93	2 71	12	9	1.	760	102
	9	0	6	7	77	2.75	2./1	5		9	/00	102

Reference:

1. Chan, K.; Tsai, C.; Hansen, H. A.; Nørskov, J. K., Molybdenum sulfides and selenides as possible electrocatalysts for CO₂ reduction. *ChemCatChem* **2014**, *6* (7), 1899-1905.