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resistant prostate cancer (CRPC), which remains an 
untreatable disease[1,3]. 

The tumour microenvironment (TME) exerts a 
strong hold on tumour initiation, progression and 
metastasis[4]. TME is a general term encompassing a 
complex heterogeneous environment which includes 
inflammatory cells, blood vessels, extracellular 
matrix[5] and fibroblasts (stroma). In normal prostate 
homeostasis, a controlled interaction between non-
epithelial components such as stroma and epithelial 
cells contributes to normal epithelial proliferation, 
differentiation and migration [5,6]. When prostate 
epithelial cells have acquired a malignant phenotype, 
this crosstalk between prostate epithelium and 
stromal cells is perturbed[6]. As a consequence, 
stromal cells play a critical role in activating cellular 
events within the TME that sustain and support 
cancer proliferation and metastasis [4,7]. Multiple 
studies of cell signalling associated with androgen[8], 
Hedgehog[9], fibroblast growth factor (FGF)[10], Src 
family kinase[11], transforming growth factor-β (TGF-β)[12], 
Integrin[13] and Notch[14] pathways, implicate the TME, 
however many such observations are derived using 
a mixture of both human and mouse models in which 
the TMEs are radically different. Accordingly more 
careful attention is required to evaluate the impact of 
the TME.

Within a tumour, the entire population of replicating 
cancer cells has been hypothesised to be derived 
from a small subpopulation of cancer stem cells 
(CSCs) or tumour initiating cells (TICs)[15]. CSCs 

have the ability to both self-renew and to produce 
progenitor and differentiated cells, generating 
phenotypically diverse tumour cell populations[16]. 
The stem cell microenvironment (SCME) is a specific 
anatomic location (or “niche”) where stem cells (SCs) 
are located, and the interplay between SCs and these 
niches can regulate the dynamic process of SCs’ 
role in tissue generation, maintenance and repair[17]. 
Several factors affect SC regulation within the SCME, 
including the interactions of SC with each other, 
with differentiated cells, and with extracellular matrix 
components[18]. Dysfunction of a cellular process 
or signalling pathway within the SC niche could 
contribute to the evolution of a CSC[19]. Although the 
presence of this CSC niche could pose obstacles for 
the treatment of PCa, it has also been proposed that 
the CSC niche also provides a potential target for 
biomarker and drug discovery[20-22].

Aldehyde dehydrogenases (ALDH) have been 
exploited as selective markers for CSCs and 
have been assigned potential functional roles in 
differentiation, self-protection and expansion[23]. The 
ALDH superfamily consists of 19 genes with distinct 
chromosomal locations, which are found across 11 
families and 4 subfamilies[23-25]. These enzymes have 
a varied tissue and organ distribution[26-28] and are 
localised in the cytoplasm, mitochondria, nucleus, 
and endoplasmic reticulum [23,24]. ALDH isoforms 
show distinct substrate specificity[26,29,30], and are 
NAD(P)+ dependent [Table 1]. Their major role is 
the detoxification of endogenous and exogenous 
molecules, via oxidation of aldehyde substrates to 

Table 1: Tissue distribution, subcellular distribution and substrates of human aldehyde dehydrogenases

ALDH Tissue distribution (main organs) Subcellular localisation* Substrate*
1A1 Most tissues[225] Cytosol Retinal 
1A2 Testis[226] Cytosol Retinal
1A3 Retina, salivary gland and stomach[87] Cytosol Retinal
1B1 Small intestine, liver and pancreas[227] Mitochondria Retinal & acetaldehyde
1L1 Liver, kidneys and muscles[228] Cytosol 10-formyltetrahydrofolate
1L2 Pancreas, heart and brain[229] Mitochondria 10-formyltetrahydrofolate
2 Most tissues[230] Mitochondria Acetaldehyde
3A1 Stomach, lung and cornea[231] Cytosol, partially in nucleus Aromatic & aliphatic aldehydes
3A2 Liver[231] Endoplasmic reticulum Fatty aldehydes 
3B1 Lung, prostate and kidneys[231] Endoplasmic reticulum Octanal 
3B2 Salivary gland and placenta[232] Endoplasmic reticulum Unknown 
4A1 Liver, kidney and placenta[26] Mitochondria Glutamate-γ-semialdehyde
5A1 CNS, brain and blood[233] Mitochondria Succinate semialdehyde
6A1 Liver, kidney and heart[26] Mitochondria Malonate semialdehyde
7A1 Liver, kidney and heart[231] Cytosol α-amino adipic semialdehyde
8A1 Liver, kidney and brain[26] Cytosol Retinal 
9A1 Liver, kidney and muscle[231] Cytosol γ-aminobutyraldehyde 
16A1 Bone, heart, kidney and lung[231] Transmembrane protein Unknown 
18A1 Pancreas, ovary, testis and kidney[231] Mitochondria Glutamic-γ-semialdehyde

*Adapted from references[26,32]
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their corresponding acids. This catalytic oxidation is 
a fine-tuned reaction evolved to protect cells from 
the harmful effects of highly reactive aldehydes and 
maintains cellular homeostasis[24,25,31]. Vital functions 
include protection of cells from oxidative stress (e.g., 
reactive oxygen species, ROS) and promotion of 
retinoic acid (RA) metabolism and signalling[32]. 

Mutations and polymorphisms in ALDH genes 
lead to a loss-of-function that are associated with 
various human pathologies[33-39], which supports their 
important biological function. Plentiful studies have 
described the expression of ALDHs in human tissues, 
however their expression profile and functional 
activity is poorly understood within the TME. As a 
consequence of high and abundant expression, 
ALDHs have been considered to be biomarkers of 
specific tumour types[40-45]. Human ALDHs are among 
the regulatory proteins that catalyse the retinoic acid 
(RA) pathway, which has been linked with “stemness” 
characteristics[45]. The ALDH1A subfamily members 
have also been identified in a wide-range of human 
CSCs, and their expression has been associated with 
poor prognosis in patients with several cancer types 
including PCa[46-54]. 

ALDH EXPRESSION AND REGULATION IN 
PROSTATE CANCER

The rate and frequency of PCa progression varies 
considerably between individuals, ranging from 
relatively slow (indolent, non-invasive) in some 
patients whilst in other cases the disease is more 
aggressive and results in rapid metastasis[55]. At 
present, PCa is diagnosed at first by monitoring 
levels of serum prostate-specific antigen (PSA) and 
digital rectal examination[55]. However there is a 
substantial overlap in PSA levels between patients 
with benign prostatic hyperplasia (BPH) and patients 
with PCa[55]. About 25% of cases with PCa display 
no increase in serum PSA levels and thus must be 
detected by other methods[55], such as diagnostic 
needle biopsies and MRI scans. Furthermore, it is 
crucial to determine indolent from aggressive forms 
of PCa, to offer patients earlier diagnosis and better 
treatment options. This is neither currently possible 
nor routine. In this regard, more detailed, in-depth 
understanding of the correlation between ALDHs and 
PCa progression may provide alternative biomarkers 
for disease diagnosis and treatment.

As indicated above, a complex interplay of PCa 
with the surrounding stroma, androgen receptor 
(AR) signalling, epithelial-to-mesenchymal transition 

(EMT) and other signalling pathways within the TME 
support progression of the disease. Stromal cells 
such as fibroblasts and myofibroblasts are involved in 
hormone signalling, contributing to stromal-epithelial 
interactions in the primary tumour setting [56-58]. 
For example both stromal and epithelial ALDH1 
expression, measured using IHC, have been shown 
to be a potential biomarker for breast cancer[59]. The 
epithelial and stromal ALDH1 expression (detected in 
43% and 69% of benign breast biopsies, respectively) 
was associated with a predicted increase in the risk 
of breast cancer. However, as with many earlier 
studies[45] on profiling ALDHs in clinical specimens, 
no information is available to ascertain which ALDH 
was overexpressed from the subfamily (ALDH1A1, 
1A2, 1A3, 1B1, 1L1, 1L2). 

In PCa, several ALDH isoforms (1A1, 1A3, 3A1, 3A2, 
4A1, 7A1, 9A1 and 18A1) have been found to be 
overexpressed[15,60-68], but only a few isoforms appear 
to play critical roles in PCa. In a recent proteomic 
study[69], ALDH1A3 expression was in part controlled 
via miR-187, as downregulation of this microRNA 
led to induction of ALDH1A3, while re-introduction 
decreased ALDH1A3 expression in PC-3, DU145 
and LNCAP prostate cancer cells. Some ALDHs 
may also contribute to regulation of AR pathways, 
with implications for normal prostate development, 
prostate carc inogenesis  and progress ion to 
androgen-independent disease[70-73]. AR is expressed 
in almost all primary PCas[74-76] and the transition 
from a localised hormone-naïve to a castration-
resistant phenotype is based on a complex interplay 
of signalling molecules attributed to aberrant AR 
signalling [73,77-79]. Raised PSA suggests that AR 
function is still active but abnormal in CRPC[80], due 
to a number of different mechanisms including AR 
amplification[81], AR gain-of-function mutations[82], 
intracrine androgen production[83], elevated levels of 
AR cofactor that sensitises cancer cells to low levels 
of androgens[84], ligand-independent activation of AR 
by growth factors and cytokines[85] and constitutively 
active messenger ribonucleic acid (mRNA) spliced 
variants of AR[86]. Consequently, AR remains a critical 
factor in the progression of early-stage PCa to CRPC. 

ALDH1A3 is androgen responsive in human epithelial 
LNCaP cells since its expression was 4-fold higher 
after treatment with dihydrotestosterone (DHT), 
which indirectly affects both AR regulation and cell 
differentiation[59]. ALDH1A3 has also been correlated 
with AR signalling pathway in primary PCa tissue 
where expression was consistent with luminal layer 
localisation[65]. Significantly, the study also showed 
that knockdown of ALDH1A3 led to substantial 
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reductions in proliferation rate and the invasive ability 
of PC-3 cells. However, the regulation of ALDH1A3 
expression is likely to be multifactorial[87]. 

Outside the ALDH1 family, strong association of 
ALDH3A1 with PCa progression has also been 
demonstrated in both immortalised cancer cell 
lines and tumour xenografts[61]. In clinical tissues 
ALDH3A1 was detected in intra-epithelial neoplasia, 
with elevated levels in carcinomas in the absence 
of expression in normal prostate glands. Finally, 
in comparison with the paired local carcinomas, 
ALDH3A1 was upregulated in both lymph node 
metastatic tumours and was detectable in bone 
metastatic PCa. 

ALDH7A1, which has also been related to the 
stemness of CSCs[88], is mainly localised in the 
cytosol, but it has also been found expressed to a 
lesser degree in the mitochondria and nucleus[32,45]. 
In addition to catalysing aldehyde metabolism, 
ALDH7A1 also plays a role in protecting tissues from 
the damaging effects of osmotic stress[89] while mutation 
of the ALDH7A1 gene has been related to pyridoxine-
dependent epilepsy[90,91]. In cancer, ALDH7A1 is 
expressed in nodular melanoma (NM)[92], ovarian[93] 
and lung cancers[94] while in PCa the isoform has 
been shown to be involved in intra-bone growth and 
induced bone metastasis[64] as well as zoledronic 
acid resistance [95].  Gene expression prof i l ing 
supports the involvement of ALDH7A1 in multiple 
molecular pathways related to the metastatic process 
in PCa[96].

EVIDENCE FOR EPIGENETIC CONTROL OF 
ALDHS

PCa can be init iated by genetic or epigenetic 
alterations, including DNA methylat ion in the 
promoter region of genes, normally l inked to 
transcriptional silencing [55]. Epigenetic changes 
including DNA methylation and histone modifications 
of tumour suppressor genes (TSGs) preferentially 
occur in the early stages of cancer progression[55]. 
The promoter region of ALDH1A2 in pr imary 
PCa specimens has been shown to be densely 
hypermethylated in comparison to normal prostate 
tissues[97]. This observation is supported by another 
study that showed a low/absent expression of 
ALDH1A2 in PCa in formalin-fixed paraffin embedded 
sections compared to elevated levels of expression 
in normal prostate tissue[98]. On this basis it was 
suggested that ALDH1A2 act as a TSG in PCa, 
and that its epigenetic regulation could differentiate 
normal prostate cells from malignancy. In contrast, 

ALDH1A3 has been demonstrated to be an androgen 
responsive gene[67] whose induction contributes 
to the conversion of retinol to RA with potential for 
supporting cellular proliferation[55]. Hypermethylation 
of the ALDH1A3 promoter region in clinical tissues 
has also been detected[99], but this study used a 
relatively small sample size (n = 24) and did not 
distinguish between methylation of basal and luminal 
PCa cells. Although larger studies are required, it is 
possible that methylation of the promoter regions of 
ALDH1A2 and ALDH1A3 could be used as a marker 
for PCa detection[55].

ALDH EXPRESSION IN CSC 
MICROENVIRONMENT

Growing evidence strongly supports initiation of PCa 
from CSCs residing within a basal niche[100-105]. In 
xenotransplantation experiments, less than 100 TICs 
are needed to generate a new tumour in mice and 
these cells exhibit a basal phenotype[106]. Furthermore, 
using human tissue biopsies the prostate SC markers 
CD44+, α2β1-integrinhigh and CD133+ have been 
used to identify and isolate prostate CSCs with self-
renewal capacity in vitro[100]. Additionally, there are 
other important markers that have been used to 
identify and isolate PCa SCs. ATP binding cassette 
(ABC) transporters which are proteins that play a 
vital role in the efflux of drugs have also been used 
to enrich CSCs. However, CD44+, α2β1-integrin high 
and CD133+ ABC transporters are also expressed 
in normal SCs[107,108] which emphasises the need to 
employ at least two markers to avoid cross reacting 
populations of cells[107]. A growing body of evidence 
suggests that the functional activity of ALDHs can be 
used to identify and purify CSCs from e.g. breast[109], 
ovary [110],  lung [111],  colon [112],  pancreas [113] and 
prostate cancer[114]. At present it is unclear if ALDH 
expression is significantly different between normal 
SCs and CSCs, hence more research is required to 
understand if any isoforms could be more predictive 
than e.g. CD44+, α2β1-integrin high and CD133+ 
used as a PCa SC gene-expression signature[115].

ALDHs expressed in SCs are members of the ALDH1 
family (1A1, 1A2, 1A3, 1L1, 1L2), ALDH2, ALDH3A1, 
ALDH4A1 and ALDH7A1, which have all been linked 
with various critical roles including chemo-protection, 
DNA damage and regulation of the cell cycle [24]. 
The Aldefluor assay has frequently been used to 
identify and isolate CSCs, but as this assay does not 
distinguish between different isoforms many studies 
suffer from a lack of knowledge of the contributing 
ALDHs to the stemness of the isolated subpopulations 
with tumourigenic properties. However, some 
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studies have shown that e.g. the ALDH1A1 isoform 
positively correlates with the expression of CSC 
surface markers CD133[116] and CD34[117] with utility 
in characterising liver CSCs and leukaemia SCs, 
respectively. The association of ALDH3A1 has also 
been reported in PCa progression[61]. Stem cell-like 
cells from DU145 cells have elevated expression of 
ALDH3A1 compared to non-stem counterparts, and 
the stem cell-like population generated xenograft 
tumours with aggressive features[118].

ALDHS AND THE RETINOID SIGNALLING 
PATHWAY 

Retinoic acid (RA, all-trans retinoic acid (ATRA), 
tretinoin) the physiologically active metabolite of 
vitamin A (retinol) is a potent regulator of signalling 
pathways during embryonic development[119]. RA 
is necessary for adult tissue homeostasis and acts 
through nuclear retinoic acid receptors (RARs)[120], 
with diverse immune modulatory roles[121,122], role in 
spermatogonial differentiation[123], and cancer[124-126]. 
RA is endogenously produced from retinol (vitamin A) 
in two subsequent metabolic steps [Figure 1]: the first 
step is the retinol oxidation to retinaldehyde, which is 
catalysed by several alcohol dehydrogenases (also 
known as retinol dehydrogenases)[127,128]. The second 
step is the oxidation of retinaldehyde to retinoic acid, 
which is an irreversible step carried out by ALDHs 
(also known as retinal dehydrogenases)[129]. At least 
four ALDH isoforms, ALDH1A1, 1A2, 1A3 and 8A1, 
have been shown to be responsible for the oxidative 
formation of ret inol to RA [128,130-132].  ALDH1A3 
appears to be the most catalytically efficient enzyme 
for RA oxidation and has no apparent capacity to 
metabolise cis-retinal substrates[133]. The involvement 
of ALDHs in RA synthesis underpins their vital 
function in pathways associated with cell proliferation, 
differentiation and survival[87]. 

The synthesised RA binds to nuclear RAR and 
retinoid X receptor (RXR) forming a heterodimeric 
complex, which binds to RA response elements 
(RAREs), leading to downstream regulation of gene 
expression and cell differentiation events[134-137]. RA 
and 9-cis-RA (isotretinoin) bind to RARs, whereas 
only 9-cis-RA can bind to RXRs[23]. In response to 
RA synthesis, cellular retinoic acid binding protein 
(CRABP) shuttles RA to the nucleus where it binds to 
the RAR/RXR heterodimer[138,139]. This subsequently 
results in the dissociation of co-repressors NCoR, 
SMRT and HDAC complex [140] and al lows co-
activators such as SRC/p160 family, p300/CBP and 
CARM-1 to bind[141,142]. The chromatin structure is 

relaxed by the action of histone acetyltransferase 
(HAT) or methyltransferase activity[143], facilitating 
the recruitment of transcriptional machinery which 
stimulates RA responsive gene transcription[144,145]. 

The RA biosynthet ic  pathway is  l ike ly to be 
suppressed or activated depending on the local 
prostate microenvironment[146-148]. The effect of RA 
has been investigated in normal and malignant 
prostate tissues[129,149]. Differential expression of RA 
was demonstrated in normal prostate, BPH, and 
prostate carcinoma tissues[129]. For example it was 
found that endogenous retinol levels were 2-fold 
elevated in BPH compared to normal and PCa tissue 
while RA levels were found 5-8 times lower in PCa 
tissue compared with the other two tissues. The 
authors speculated that the reason for this elevated 
level of retinol in BPH could reflect (1) a reduced 
activity of the dehydrogenase that metabolises retinol 
to retinal or (2) uptake from serum that metabolises 
retinol to retinal. A possible cause for the reduced 
level of RA in PCa could be a more rapid degradation 
of RA by cytochrome P450 enzymes[150].

In addition, RA also has variable effects on PCa 
signalling pathways, either directly or indirectly by 
regulating certain transcriptional factors such as 
NR2F1[151] and RA receptor responder 1 (RARR1)[152] 
since RA represses invasion and SC phenotype by 
induction of metastasis suppressors RARR1 and 
latexin (LXN) in PCa[153]. 

Retinoids are used as cancer treatment, in part due 
to their ability to induce differentiation and arrest 
proliferation. In the clinic, RA has been clinically 
investigated in PCa as single treatment[154], or with 
other agents in attempts to produce synergistic 
effects[155-157]. However, delivery of retinoids presents 
a challenge because of the rapid metabolism and the 
epigenetic alterations that can render cells retinoid 
resistant[158]. This poses new challenges rather than 
solutions. ALDH1A3 expression is regulated by many 
factors and is linked to many metabolic pathways 
including glycolysis and retinoid signalling, which 
has been recently reviewed[87] and hence not further 
discussed here.

The relationship between AR and ALDH1A3 has 
been studied in both normal and tumour tissues, to 
understand the exact mechanism of their interaction, 
and its relationship to the role of ALDH1A3 as a 
marker of CSCs in several tumour types. In breast 
cancer, a potential link between ALDH1A3 expression 
and RA signalling contributed to an increase in the 
rate of cancer progression[159]. In human epidermal 
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keratinocytes, it has been shown that regulation of RA 
metabolism involved the transcriptional activation of 
only ALDH1A3 amongst a panel of ALDH genes[160]. 
ALDH1A3 activity induced by RA-regulated genes 
has been proposed to play a role in establishing a 
unique transcriptional profile that favours the CSC 
phenotype[161,162]. Conversely, a recent study revealed 
that ALDH1A1, 1A2 and 1A3, were downregulated in 
the undifferentiated embryonal cancer Wilms’ tumour 
1 (WT1) resulting in inhibition of RA synthesis[163]. 

Blum et al.[164] investigated the regulation of both 
RA and ALDH1A3 in the urogenital sinus epithelium 
(UGE), which contains primitive foetal prostate cells. 
A number of the major regulators of the RA receptor, 
including ALDH1A3 were up-regulated in both 
primitive populations of adult and foetal prostate SCs, 
with 10-fold increased ALDH activity in adult prostate 
SCs compared to cell population (Sca-1Neg) with 
no regenerative potential. In addition, expression of 
CRABP, which transports RA into the nucleus to bind 

Figure 1: Aldehyde dehydrogenases (ALDHs) expression and function in the tumour microenvironment. ALDH expression in cancer stem 
cells (CSCs) and differentiated cells have been linked with several cellular processes including glycolysis/glucogenesis and amino acid 
metabolism, which are likely to be affected by the local microenvironment including impact by hypoxia (A, B). Various ALDH isoforms have 
been shown to be regulated by e.g. tumour suppressor genes, oncogenes and microRNAs, however a well-documented functional role is 
linked with the retinoic acid (RA) pathway resulting in transcriptional activation of a number of genes important in cell differentiation (C). 
High ALDH expression is frequently used as an endogenous marker that in combination with cell surface markers can be used to isolate 
CSCs (D). More research is required to understand how ALDH activity may contribute to signaling pathways, maintenance of CSCs and 
contribute to tumour aggresiveness (D, E)
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RA receptors was 47-fold up-regulated in the UGE, 
as confirmed by qPCR analysis, and may indicate the 
potential of these cells to differentiate. In the context 
of PCa, ALDH1A3 might play a significant role in 
the CSC niche of the TME, thereby contributing to a 
survival mechanism.

THE CSC NICHE, SIGNALLING PATHWAYS 
AND POTENTIAL FOR THERAPEUTIC 
INTERVENTION 

Cancer cells acquire a more invasive and migratory 
phenotype through EMT[165-168]. Cell adhesion is 
reduced in early metastatic PCa by downregulation 
of  express ion  o f  E-cadher in  and  β -ca ten in 
(characteristically expressed in normal epithelial 
cells)[169]. In contrast, the expression of N-cadherin 
(characteristically expressed in mesenchymal cells) 
is upregulated[170]. In clinical specimens there is 
lower E-cadherin and β-catenin expression and 
higher N-cadherin expression in higher grade PCa 
compared to lower grade PCa [171-174]. However 
restoration of elevated E-cadherin expression and 
β-catenin was seen in metastatic cells deposited in 
the bone[175], implicating expression control rather 
than total E-cadherin gene loss. 

The Wnt/β-catenin signall ing pathway plays a 
significant role in maintaining the stemness of 
PCa[176,177]. In radioresistant ALDH+ (identified by 
Aldefluor assay) prostate progenitor cells, activation 
of EMT and the Wnt/β-catenin signalling pathways 
has been demonstrated. In this study, ALDH1A1 
gene expression was regulated by the Wnt signalling 
pathway and correlated with simultaneous expression 
of β-catenin in whole prostate tumour specimens[178]. 
Encouragingly, inhibition of the Wnt pathway (by 
siRNA knockdown or the tankyrase inhibitor XAV939) 
resulted in reduced ALDH+ tumour progenitor 
population and radio-sensitisation of cancer cells[178]. 
The link between ALDH1A1 and β-catenin has also 
been demonstrated using spheroidal aggregates 
in a xenograft model comprised of ovarian cancer 
cells with stem cell characteristics [179]. In this 
study, β-catenin knockdown decreased ALDH1A1 
expression, which subsequently led to inhibition of 
tumour growth and metastasis. 

As described above, ALDH7A1 is highly expressed 
in primary PCa tissue[15,88]. ALDH7A1 knockdown 
decreased the stem/progenitor cell subpopulation in 
the human PCa cells and tumour migration ability in 
vitro[88]. The activity was correlated with increased 
TGF-β signalling, which strongly induced ALDH7A1 

activity while the activity could be inhibited with a 
TGF-β signalling antagonist[88]. Overexpression of the 
TGF-β signalling pathway correlates with poor clinical 
outcomes in PCa. TGF-β promotes tumour progression 
by stimulating the metastasis and angiogenesis[180].  

As with many other studies, investigation of ALDH+ 
cells isolated from both PCa cell lines and primary 
cells have shown self-renewal, colony forming capacity 
and tumourigenicity. ALDH expression correlated 
with CD44 and α2β1-integrin expression as well as 
phosphorylation of the transcription factor STAT3. 
Galiellalactone, a potent and specific inhibitor of 
STAT3 signalling, reduced ALDH1A1 expression and 
subpopulation of ALDH+ cells following treatment of 
DU145 PCa xenografts. This study highlighted the role 
of the STAT3 signalling pathway in putative prostate 
CSCs and further supports STAT3 as a potential 
therapeutic target[181]. In a separate study using 
primary tumour cells, STAT3 inhibition resulted in both 
cell death and CSC differentiation, resulting in a loss of 
both colony forming and tumour initiating capacity[182].

ALDH ASSOCIATED DRUG RESISTANCE IN 
THE TME

A number of studies have linked ALDH expression 
wi th chemotherapy resistance,  a l though the 
underlying mechanisms are not well understood. 
Whilst chemotherapy reduces the bulk of a tumour, 
it also enriches the previously described CSC 
population [183-185] which are not susceptible to 
anti-mitotic drugs currently approved for clinical 
use. Although evidence is not available in PCa, 
CSCs have been shown to be highly resistant to 
both radiotherapy and chemotherapies including 
temozolomide, gemcitabine, etoposide, carboplatin, 
paclitaxel, fluorouracil, mitoxantrone, daunorubicin 
and cyclophosphamide (CPA)[186-200], contributing to 
tumour recurrence and metastasis. There are several 
possible mechanisms for CSC resistance to cancer 
therapy. Firstly, CSCs are slow-proliferating cells 
in a quiescent state and thus resist drugs primarily 
designed to target rapidly dividing cells[201]. Secondly, 
CSCs resist irradiation because of increased 
activation of the DNA damage checkpoint response, 
as exemplified in a recent study of glioblastoma 
CSCs [202]. Thirdly, increased expression of ABC 
transporters protects CSCs from high concentrations 
of drugs[203], as demonstrated by removal of Hoechst 
stain in analysis of side populations[204,205]. Lastly, high 
ALDH expression is likely linked to metabolic and 
detoxifying mechanisms, supporting a role as chemo-
protecting enzymes[201]. 
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Early studies first demonstrated a chemo-resistant 
role for ALDHs in a CPA resistant L1210 leukaemia 
cell line[206]. This study showed that high levels of 
ALDH activity were found in L1210 cells and that 
treatment with disulfiram (ALDH inhibitor) reversed 
the resistance phenotype of the cells to CPA. A 
subsequent study confirmed the role of ALDH-
mediated CPA resistance in medulloblastoma[207]. 
Similar studies demonstrated that high ALDH activity 
indicates CPA resistance in cancer and CSCs[208]. 
Accordingly, inhibition of ALDH activity can in 
principle serve to sensitise CSCs to drugs such as 
CPA[209]. More specifically, ALDH1A1 and ALDH3A1 
were both shown to inactivate CPA analogues[210,211]. 

The sphere forming cells (a common property of 
CSCs), from the sarcoma cell line MG63 were 
significantly insensitive to doxorubicin and cisplatin 
treatment compared with monolayer adherent 
counterparts. The sarcosphere cells with high 
ALDH1 activity were proposed as candidate sarcoma 
SCs, in which efficient drug detoxification is likely to 
have contributed to generation of a chemo-resistant 
CSC phenotype [191].  Furthermore, high ALDH 
expression in CSCs has shown chemo-resistance 
in both breast CSCs [190,212] and head and neck 
squamous cell carcinoma (HNSCC) SCs[213], where 
ALDH expression was associated with high Snail 
expression, a marker of EMT. Knockdown of Snail 
expression significantly decreased the expression 
of ALDH1 whilst blocking the tumorigenic abilities 
of CD44+ CD24- ALDH1+ cells[213]. Although many 
chemotherapeutic drugs are less effective in ALDH-
expressing cancer cells, the underlying mechanisms 
are poorly understood. None of the drugs contain 
aldehyde functional groups that are direct substrates 
for biochemical reactions with ALDHs, but esterase 
activity has been shown for some of these enzymes, 
which potentially provides an ALDH mediated 
resistance mechanism for drugs such as the 
taxanes. Phase 1 metabolism resulting in short lived 
aldehydes as illustrated for CPA are direct substrates 
for ALDH detoxif ication, providing a potential 
resistance mechanism in ALDH+ expression cells 
including CSC population within the TME [Figure 2]. 
Drug resistance can be reversed by co-treatment 
with an ALDH inhibitor such as DEAB. For example, 
doxorubicin, paclitaxel and radiotherapy resistance in 
breast cancer cell lines has been reversed following 
treatment with DEAB or RA[190]. 

ALDH, HYPOXIA AND TME

Hypoxia is not only a major feature of the tumour 
microenvironment but is also a potential contributor 

to the multidrug resistance (MDR) and enhanced 
tumourigenicity of CSCs[214]. Within the proposed 
hypoxic CSC niche, the cells are surrounded 
by an acidic microenvironment that activates a 
subset of metastasis promoting proteases such as 
MMPs and cathepsins [215]. As a consequence of 
poor angiogenesis and the inaccessible location, 
hypoxic cells are exposed to insufficient drug 
concentrations, which promote the survival of a drug-
resistant sub-population of cells. The lower oxygen 
tension increases resistance to radiotherapy and as 
discussed above, also enriches CSC niche within 
the TME. Hypoxia-activated prodrugs (HAPs) have 
been investigated for several decades and have 
shown considerable promise in combination with 
chemotherapy or radiotherapy, but no HAPs have 
yet been approved for clinical use. Unravelling the 
PCa microenvironment is likely to offer new insight 
and opportunities to molecularly stratify patients for 
treatment, based on their tumours’ hypoxic signature, 
including analysis of enzymes with oxidase and/
or reductase functionality. Prostate tumours are 
considerably hypoxic as discussed in this thematic 
issue[216] and enzymes such as ALDHs are likely to 
be expressed differentially within the TME due to 
different pressures including hypoxic stress and types 
of cells such as MDR and CSCs. 

The l imited sensit iv i ty of hypoxic tumours to 
radiotherapy may in part be related to CSCs residing 
in the hypoxic niche. Primary human PCa samples 
express both elevated levels of ALDH1A1+ and 
hypoxia inducible factor 1 alpha (HIF-1α), which 
have been linked to radioresistance[217,218]. A recent 
study [219] demonstrated that irradiation enriched 
the CSC population of DU145 and PC-3 cells. The 
irradiated cells were shown to possess elevated 
ALDH functional activity as well as DNA damage 
response activity, and in vivo the irradiated ALDH+ 
cells were shown to maintain their tumorigenic 
properties, suggesting these might be radioresistant 
in vivo. Furthermore, in primary human prostate 
tumours, IHC analysis revealed co-localisation of 
ALDH1A1 and HIF-1α expression, implying that 
a subset of ALDH+ cells resides in the hypoxic 
niche and emphasising the need to target these to 
effectively eradicate heterogeneous prostate tumours.

In other tumours, for example radiation resistant 
mesenchymal glioma, the SCs (MGSCs) possess 
elevated glycolytic activity and ALDH activity, in 
contrast to benign proneural SCs. Expression of 
ALDH1A3 was increased in clinical high-grade 
glioma compared with low-grade glioma or normal 
brain tissue[220]. Encouragingly, although the MGSCs 
were very aggressive in vitro and in vivo, the pan-
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ALDH inhibitor DEAB significantly reduced cellular 
proliferation in vitro. This investigation suggested that 
two subtypes of MGSCs, harbouring distinct metabolic 
signaling pathways, constitute intratumoural glioma 
heterogeneity. ALDH1A3 was proposed to play an 
important role in the glycolysis pathway, via catalytic 
metabolism of acetaldehyde to acetate that is in turn 
linked to the tricarboxylic acid (TCA) cycle[220]. The 
glycolysis pathway is interesting because of the link to 
the TME and what is defined as the “Warburg effect”. 
A recent study[221] reported on the mitochondrial 
pyruvate carrier 1 (MPC1) gene in knockout studies 
using CRISPR/Cas9 technology in RM-1 murine PCa 
cells. The MPC1 gene knockout cells revealed a 
metabolism reprogramming to aerobic glycolysis with 
reduced ATP production, increase in cell migration 
and resistance to both chemo- and radiotherapy. 
In addition, the MPC1 knockout cells expressed 

significantly higher levels of the stemness markers 
Nanog, HIF-1α, Notch1, CD44 and ALDH. 

The latter study provides an alternative route for 
therapeutic intervention, focussed on reprogramming 
glycolytic pathways. ALDHs such as the 1A3 isoform 
could be a key player in such therapeutic intervention. 
However, as we[45] and others[46,87,222] have discussed 
previously, the expression of ALDHs in normal 
tissue expression remain a stumbling block towards 
a credible clinical therapy. However, advances in 
drug delivery technologies could in the future enable 
administration of an ALDH inhibitor, which is potently 
selective for a specific isoform. For example, a recent 
report[223] indicate that the latter might be achieved 
in combination with radiotherapy, or as an option to 
sensitise heterogeneous prostate tumour responses 
to docetaxel.

Figure 2: Cytochrome P450 (CYP) activation of cyclophosphamide (CPA). Initial hydroxylation of CPA in the liver by CYP isoforms 
leads to generation of aldophosphamide, an intermediate which is a substrate for aldehyde dehydrogenases (ALDHs) metabolism. If 
aldophosphamide enters circulation it is very likely to be detoxified in ALDH-expressing cells including cancer stem cells (CSCs), but not in 
cancer cells with low or absent ALDH expression
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CONCLUDING REMARKS

The number of papers that report ALDH expression 
in the context of cancer is largely attributable to the 
use of the Aldefluor assay as a means to identify and 
isolate subpopulations with particularly stemness 
characteristics. However, selected ALDH isoforms 
are also emerging as critical players in chemo- 
and radioresistance and a signature of tumour 
aggressiveness in conjunction with cells capable 
of migration, invasion and metastasis. Still, as is 
clear from this review of ALDH expression and 
function in PCa and other recent reviews[45,46,87,222], 
the ever increasing number of publications that 
reveal inconsistent and sometimes contradictory 
information is not helpful in clarifying ALDHs as 
potential biomarkers of specific cancer types or CSC 
population; e.g., many early studies that reported on 
ALDHs, utilised antibodies that only stained for e.g. 
ALDH1 but were not selective for 1A1, 1A2, 1A3, 
1B1, 1L1 or 1L2. Equally the Aldefluor assay is not 
isoform-selective and has contributed to inefficient 
validation of these enzymes. Furthermore, previous 
studies were carried out when the understanding of 
cancer cell subtypes, and the involvement of TME 
was limited, resulting in incomplete ALDH profiling. 
Bearing this in mind, currently emerging evidence in 
PCa suggests the dominant isoforms are ALDH1A1, 
1A2, 1A3, 3A1 and 7A1. The expression and 
function have been demonstrated using a number 
of different 2D and 3D cancer models as well as 
clinical samples. Further investigations of these 
isoforms are required in order to fully validate their 
potential as biomarkers or targets for therapeutic 
intervention. Such investigations should take better 
account on our choices of models as argued by 
Maitland in accompanying review[224] in this thematic 
issue. As discussed in this review, ALDH enzymes 
also play a functional role in CSC populations, 
in the context of the TME. This synergy will be 
important in future studies to dissect whether ALDH 
expression leads to drug resistance via direct or 
indirect mechanisms. Underpinning the role of the RA 
signalling pathways, and the glycolytic biochemical 
pathways associated with the Warburg effect form 
part of both a regulatory network and a vicious cycle 
of tumour aggressiveness. The TME no doubt plays 
a critical role in exerting this selective pressure on 
ALDH expression and function, and hence should be 
more carefully considered in unravelling the cellular 
roles for specific ALDH isoforms. In this regard, use 
of siRNA, CRISPR and the development of highly 
specific small molecules to probe ALDH function will 
enable us more quickly ascertain the importance of 
specific ALDHs. 
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