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Abstract
Nowadays, the number of people that utilize either digital applications or machines is increasing exponentially. 
Therefore, trustworthy verification schemes are required to ensure security and to authenticate the identity of an 
individual. Since traditional passwords have become more vulnerable to attack, the need to adopt new verification 
schemes is now compulsory. Biometric traits have gained significant interest in this area in recent years due to their 
uniqueness, ease of use and development, user convenience and security. Biometric traits cannot be borrowed, 
stolen or forgotten like traditional passwords or RFID cards. Fingerprints represent one of the most utilized 
biometric factors. In contrast to popular opinion, fingerprint recognition is not an inviolable technique. Given that 
biometric authentication systems are now widely employed, fingerprint presentation attack detection has become 
crucial. In this review, we investigate fingerprint presentation attack detection by highlighting the recent advances 
in this field and addressing all the disadvantages of the utilization of fingerprints as a biometric authentication 
factor. Both hardware- and software-based state-of-the-art methods are thoroughly presented and analyzed for 
identifying real fingerprints from artificial ones to help researchers to design securer biometric systems.

Keywords: Presentation attack detection, fingerprints, hardware- and software-based methods, biometrics, 
multimodal systems, multi-factor authentication
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INTRODUCTION
As the utilization of digital devices and applications continues to grow, the need for more complex solutions 
to authenticate legitimate users is becoming essential. In this context, biometric-based authentication 
systems are being increasingly employed as they can be found almost everywhere, including in 
smartphones, laptops and so on. Fingerprint recognition is based on the Galton points [Figure 1], named 
after Sir Francis Galton, who in the late nineteenth century used the so-called Galton points to categorize 
the attributes of a finger that are utilized to identify a person. Later on, in the late 1960s, with the 
mechanization of fingerprint matching and the advancement of computer science, these points were 
renamed to minutiae points and became the standard in the feature extraction stage of fingerprint systems[2].

Fingerprint recognition has some of the lowest false rejection rates (FRRs) and false acceptance rates (FARs) 
compared to other biometric authentication systems[3]. In 2015, it held 58% of the global market share of 
biometric authentication systems[3]. Although fingerprints are one of the most utilized biometric factors, 
security weaknesses still arise. To enhance security, multi-fingerprint systems have been proposed. These 
systems use more than one finger to produce the biometric identity of a user.

As more biometric systems are utilized, presentation attacks (PAs) are also increasing. PAs can be defined 
as “presentation to the biometric data capture subsystem with the goal of interfering with the operation of 
the biometric system”[4]. Artificial fingerprints can be created using low-cost hardware and software, 
meaning that a skilled person who wants to compromise the security of a system is very likely to succeed.

Security attacks on fingerprint authentication systems can be classified into three categories: (1) attacks with 
the use of PA instruments at the sensor; (2) attacks on a module of the system; and (3) attacks on the 
communication channel between the modules of the system. Many types of security violations on 
fingerprint scanners occur during the communication between the modules of the authentication scheme. 
Attackers try to modify the data on the communication channel between the sensor and the feature 
extraction module. Data modification also happens when they circumvent the channel amongst the feature 
extraction module database and the matching module or between the database and the matching module. In 
this kind of attack, the attackers modify the data of the channel and manipulate the routines of the various 
modules of the system. Moreover, perpetrators can insert fake data that the system recognizes as genuine. 
This attack takes place directly at the modules of the authentication system, i.e., the data storage, the signal 
processing and the comparison decision [Figure 2], by modifying the data. The aforementioned 
vulnerabilities can be counteracted with the use of software- or hardware-based encoding and decoding 
techniques on the communication channels between the modules of the fingerprint authentication system[5].

Liveness detection refers to the analysis of the features of a finger to determine whether the input finger is 
live or not. Presentation attack detection (PAD) is the automated determination of a PA[4], while liveness 
detection is a sub-category of PAD. The term PAD will be utilized throughout this survey, although authors 
in the presented state-of-the-art research may use the previous term, i.e., liveness detection or “anti-
spoofing attacks”. A taxonomy of the state-of-the-art methods is shown in Figure 3. To detect whether a 
fingerprint is artificial, additional hardware is used to detect the heartbeat, blood pressure, skin impedance 
and other biometrics of the fingerprint like odor. Nevertheless, these approaches are usually expensive. To 
tackle this, researchers are using software-based methods to extract PAD features directly from the acquired 
sample from the main sensor. These approaches are based on the fact that certain characteristics of live 
fingerprints cannot be duplicated. These distinct features can be extracted and selected with the use of 
further analysis of the acquired sample. There are two kinds of methods that are employed, i.e., “dynamic” 
methods that perform feature extraction by investigating multiple frames of the acquired sample and 
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Figure 1. A fingerprint image[1].

Figure 2. Types of security attacks on a fingerprint authentication system[4].

“static” methods that use a single image of the impression of the fingertip[6].

This survey presents a comprehensive literature review of PAD methods. The performance and quantitative 
analysis of the methods presented in the following sections have also been given by the utilized metrics in 
the discussed studies, such as the accuracy, fake error rate and so on.

Kundargi et al.[7] refer only to textural feature-based fingerprint PAD methods, while we make an overall 
presentation. Comprehensive surveys are given in Refs.[8,9] but these are now outdated. The detailed surveys 
in Refs.[10-12] only provide the PAD methods proposed for LivDet competitions[13]. This work (1) provides a 
detailed literature review of state-of-the-art fingerprint PAD methods; (2) is focused on, but not limited, the 
last decade; (3) refers to all PAD categories (i.e., both software- and hardware-based approaches) and not 
only to specific ones (e.g., only texture- or hardware-based approaches); and (4) is up to date, including 
current research trends, such as deep learning techniques.
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Figure 3. Presentation attack detection methods, inspired by[8,9].

All discussed studies were retrieved by Google Scholar. Initially, the search terms “fingerprint presentation 
attack detection” and “fingerprint liveness detection” were given and this resulted in the retrieval of 17,200 
and 6830 records, respectively. To lessen the number of retrieved studies, a new search was performed 
under the limitation that the search term should be part of the title of the publication, thereby making them 
relevant to the subject of interest. The search queries were: (1) allintitle: “fingerprint liveness detection”, 
which resulted in 199 publications; (2) fingerprint “presentation attack”, which retrieved 51 publications; 
and (3) allintitle: “fingerprint spoof detection”, which resulted in 31 publications.

A thorough search was also made regarding the LivDet competitions from 2009 to 2019[13], as the most 
relevant events for PAD. Furthermore, a recent survey[14] (included in Ref.[15]) was considered and taken into 
account. By combining the aforementioned search results and by reading the abstract of each publication to 
determine whether it was relevant to our research, we eventually reached a total of more than 190 
publications, which are discussed in the following sections.

The main contributions of this article can be summarized as follows:

(1) A comprehensive review is performed regarding state-of-the-art methods for fingerprint PAD. 
(2) The literature review presents both hardware- and software-based methods, thereby updating other 
similar works[8,9] and those where only one category was examined[7]. 
(3) The software-based methods include the latest trends, such as deep learning approaches. 
(4) A quantitative and qualitative analysis of the datasets that were utilized in the relevant literature is 
presented. 
(5) In addition to the presentation of the methods according to the taxonomy in Figure 3, tables are given 
for each category that summarize the most important features of each method. 
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(6) The research challenges and potential research directions are outlined.

The rest of the review is organized as follows. In TERMS, DEFINITIONS AND EVALUATION METRICS, 
the terms, definitions and evaluation metrics are presented, while DATASETS refers to the most utilized 
and publicly available datasets. HARDWARE-BASED PRESENTATION ATTACK DETECTION presents 
the hardware-based methods, while the software-based methods are given in SOFTWARE-BASED 
PRESENTATION ATTACK DETECTION. A discussion along with potential research directions is 
presented in DISCUSSION. Finally CONCLUSIONS outlines the derived conclusions from this review.

TERMS, DEFINITIONS AND EVALUATION METRICS
In this section, we report the terms and evaluation metrics utilized by authors in their publications. It must 
be noted that some of them are no longer utilized, as they no longer exist in the ISO/IEC 30107-3 
standard[16]. Nevertheless, since they were utilized in previous studies, it was deemed appropriate to report 
them. The most common evaluation metrics are the accuracy, maximum accuracy (ACC), equal error rate 
(EER), average classification error (ACE) [Equation (1)], attack presentation classification error rate 
(APCER) and bona fide presentation classification error rate (BPCER). These estimators were used on the 
ATVS[17], the LivDet 2009-2019[13] [Figure 4], the MSU FPAD[18] and the Precise Biometrics Spoof-Kit 
dataset[18]. The terms and evaluation metrics are defined as follows:

- Attack presentation/presentation attack: “presentation to the biometric data capture subsystem with the 
goal of interfering with the operation of the biometric system”.

- Presentation attack instrument (PAI): “biometric characteristic or object used in a presentation attack”.

- PAI species: “class of presentation attack instruments created using a common production method and 
based on different biometric characteristics”.

- Bona fide presentation: “interaction of the biometric capture subject and the biometric data capture 
subsystem in the fashion intended by the policy of the biometric system”.

- Bona fide presentation classification error rate: “proportion of bona fide presentations incorrectly 
classified as presentation attacks in a specific scenario”.

- Attack presentation classification error rate: “proportion of attack presentations using the same PAI 
species incorrectly classified as bona fide presentations in a specific scenario”.

The accuracy and average classification rates can be described as:

- Accuracy: rate of correctly classified genuine (live) and fake fingerprints given a threshold of 0.5.

- True detection rate (TDR): the percentage of PA samples correctly detected.

- False detection rate (FDR): the percentage of bona fide samples incorrectly classified as PA.

- False spoof acceptance (FSA): the percentage of live fingerprint samples that are misclassified as spoofs 
(PAs).
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Figure 4. Samples from LivDet fingerprint dataset[11].

- False live rejection (FLR): the percentage of spoof (PA) samples that are misclassified as live.

- FerrLive: rate of misclassified live fingerprints.

- FerrFake: rate of misclassified fake (artificial) fingerprints.

- Equal error rate: rate at which FerrLive and FerrFake are equal.

- False acceptance rate: percentage of imposters accepted by the system.

- False rejection rate: percentage of genuine users rejected by the system.

- Average classification error rate (ACER): ACE = (BPCER + APCER)/2                                                        (1)

- Correct classification rate (CCR): percentage of correctly classified presentations (not defined in the 
ISO/IEC 30107-3 standard but used in previous studies).

- Spoof, spoofing and anti-spoofing: terms used in the literature instead of PAI, PA and PAD before the 
adoption of the ISO/IEC 30107-3 standard.
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Although APCER and BPCER are the standard metrics in ISO/IEC 30107-3[16], ACER is also mentioned due 
to its utilization in LivDet competitions.

DATASETS
Fingerprint PAD is a binary classification problem, i.e., the acquired samples are classified as bona fide or 
artificial. The datasets that train and test the classifiers play an important role. For this reason, it is 
important to refer to the structure and the characteristics of the most common and publicly available 
datasets. The procedure to create a dataset is to capture samples from unique individuals and afterwards to 
create the artificial ones. The resulting dataset is then split into a training and a test set, which are utilized to 
train and test the proposed classifiers, respectively.

To create the artificial fingerprint images, two different approaches are deployed, namely, the cooperative 
and non-cooperative methods. In the cooperative method, the subject pushes their finger into a malleable 
material, e.g., plastic, or wax, to create a mold, which is then filled with a material, such as gelatin, Play-Doh 
or silicone. In the non-cooperative method, an attacker typically enhances a latent fingerprint left on a 
surface, e.g., a CD, photographs it and finally prints the negative image on a transparency sheet.

A dataset needs to be both qualitatively and quantitatively good. The quantitative part concerns the number 
of existing bona fide and artificial samples. The more samples in the dataset, the better it should be. 
However, in addition to the absolute number of bona fide/artificial samples, a key factor is the distribution 
of samples in each one of the two categories. Ideally, datasets must be balanced. A balanced dataset is a 
dataset where each output class, bona fide and artificial in this case, is represented by the same number of 
input samples. As deep learning methods have been extensively utilized in recent years, the number of 
samples in the dataset, along with their distribution (number of bona fide/artificial samples), are important 
factors in the design of efficient classification algorithms.

Another qualitative element of a dataset is the number of subjects that were used to capture the bona fide 
samples and the number of visits that were needed to capture the bona fide samples. In some cases, the bona 
fide samples were captured during one visit, while in others in multiple visits. It is important to include a 
large number of unique subjects, as well as multiple visits for the training bona fide samples[19].

Moreover, the number of optical sensors (scanners), their resolution and the size of the captured images are 
other factors that need to be addressed. Good quality of the captured images is a prerequisite for good 
system performance, but it also allows for subsequent reliable processing of the data. Furthermore, the 
method with which the images were acquired should also be considered. Bona fide samples with wet and 
dry fingers and with high and low pressures should be present in the dataset.

Finally, it must be noted that an efficient algorithm should recognize artificial samples from unknown, i.e., 
not present in the training set, materials. Thus, the proposed algorithms are evaluated against overfitting 
and how well they generalize unseen data (artificial samples of unknown materials). For this reason, the test 
set should be adjusted accordingly.

The most common datasets that were utilized from the presented state-of-the-art methods are the ATVS, 
LivDet 2009-2019, MSU-FPAD and the Precise Biometrics Spoof-Kit Dataset. However, although the 
aforementioned datasets are considered as benchmarks, especially the ones introduced in the LivDet 
competitions, there are many proposed methods that utilize custom datasets[20-22]. The qualitative and the 
quantitative elements of the most common publicly available datasets are presented in Table 1.
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Table 1. Most utilized and publicly available datasets

Dataset
Number of 
capture 
subjects

Number of 
scanners 
used

Used PAI species Creation method of the 
artificial fingerprints

Number of 
samples in 
training set

Number of 
samples in 
test set

Total 
number of 
samples

LivDet 2009 111 3 Gelatin, silicone, Play-Doh Cooperative 2750 8250 11,000

LivDet 2011 206 4 EcoFlex, Silgum, Gelatine, Latex, Wood Glue, Play-Doh, Silicone Cooperative 4000 4000 8000

LivDet 2013 244 4 EcoFlex, Gelatine, Latex, Modasil, Body Double, Wood Glue, Play-Doh Cooperative/non-
cooperative

8500 8500 17,000

LivDet 2015 51 4 Body Double, EcoFlex, Play-Doh, Gelatine, Latex, Wood Glue Cooperative 10,448 10,448 20,896

LivDet 2017 50 3 Body Double, Ecoflex, Play-Doh, Wood Glue, Gelatin, Ecoflex w. additive, 
Gelatin w. additive

Cooperative/non-
cooperative

6598 11,186 17,784

LivDet 2019 NA 3 Wood Glue, Ecoflex, Body Double, Latex, Gelatine, Liquid Ecoflex Cooperative/non-
cooperative

6400 6565 12,965

ATVS 17 3 Play-Doh Cooperative/non-
cooperative

1530 1530 3060

MSU-FPAD NA 2 Ecoflex, Play-Doh, 2D print (Matte Paper), 2D print (transparency) Cooperative 9750 9750 19,500

Precise 
biometrics 
Spoof-Kit

NA 2 Ecoflex, Gelatin, Latex Body paint, Ecoflex with silver colloidal ink coating, 
Ecoflex with bare paint coating, Ecoflex with Nanofit coating, Crayola Model 
Magic, Wood glue, Monster Liquid Latex, 2D fingerprint on office paper

Cooperative 950 950 1900

PAI: Presentation attack instrument.

HARDWARE-BASED PRESENTATION ATTACK DETECTION
Hardware-based PAD methods require explicit sensors to be integrated into the fingerprint biometric system to detect whether signals, such as the fingerprint 
temperature[23], pulse oximetry[24], blood pressure[25] or odor[26], are real or not. Biometric systems that make use of these hardware sensors capture both the 
subject’s fingerprint and one or more of the signals to authenticate the user. Thus, authentication is more accurate, PAs are prevented and the FAR will be 
higher. However, on the contrary, the system becomes more complex and expensive.

The skin temperature is considered normal when it lies between 26 and 37 °C. However, there are people whose blood circulation is problematic and this fact 
finally leads to a larger deviation in skin temperature. Moreover, the environmental conditions, e.g., temperature, that exist during sample acquisition must be 
considered in order to make the biometric system operational under different conditions. Therefore, the temperature range must become larger, but this 
inevitably increases the likelihood that the system will be deceived.
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Baldisserra et al.[26] proposed an odor-based PAD system. The acquisition of the odor is made of chemical 
sensors that detect the characteristic pattern of an odor. The achieved EER measured during the 
experiments was 7.48%. The conducted experiments showed that when the odor sensors were exposed to 
skin or gelatin, the voltage decreased, while it increased when the sensors were exposed to silicone or latex. 
However, the drawback of the method was that some artificial fingers, such as gelatin, show analogous 
sensor responses to real fingers and therefore the biometric system can be fooled.

Pulse oximetry measures the saturation of oxygen of hemoglobin (%Sp02) by calculating the red and near 
infrared light absorption characteristics of oxygenated and deoxygenated hemoglobin.

Blood pressure was also proposed[25] as a biosignal capable of discriminating between bona fide and artificial 
fingerprints. Normal adult blood pressure is in the range of 80 mmHg, when the heart relaxes (diastolic 
pressure), to 120 mmHg, when the heart beats (systolic pressure). Lower values mean that the person suffers 
from hypotension. Conversely, when the systolic blood pressure is equal to or above 140 mmHg and/or a 
diastolic blood pressure is equal to or above 90 mmHg, the person suffers from hypertension. Critical 
pressure values are 140 mmHg for the diastolic blood pressure and 300 mmHg for the systolic blood 
pressure. Therefore, diastolic and systolic blood pressure values range from 80 to 140 mmHg and from 120 
to 300 mmHg, respectively[27]. Thus, blood pressure values outside these ranges may indicate an artificial 
fingerprint. The limitation of this method relies on the case that if an attacker “wears” an artificial 
fingerprint on their finger, the measured blood pressure value may lie within the accepted range. Therefore, 
an attacker with hypertension could bypass this PAD method.

Another approach to detect whether or not an artificial material was utilized is the deployment of optical 
coherence tomography (OCT)[28]. OCT is an imaging technique that allows some of the subsurface 
characteristics of the skin to be imaged and extracts relevant features of multilayered tissues up to a 
maximum depth of 3 mm.

Cheng and Larin[29] proposed the adoption of OCT by acquiring averaged B-scan slices to reduce speckle 
noise and form a one-dimensional curve that represented the distribution of light into the skin. Afterwards, 
they applied autocorrelation analysis to detect repeating structures. Homogeneous signals yield high 
absolute autocorrelation coefficients, while inhomogeneous signals yield autocorrelation coefficients close 
to zero. The authors assumed that real human skin exhibits inhomogeneity while artificial fingerprints do 
not.

Cheng and Larin[30] extended the previous work and instead of obtaining a B-scan slice, they acquired a 
number of lateral scans to create a volumetric representation of the finger. Using this method, they were 
able to visually analyze the topography of the fake layer and the underlying real fingerprint to detect PAs.

Other similar works utilized a frequency-domain OCT system[31], a spectral-domain OCT system[32], an en 
face and time-domain OCT system[33] and a swept source OCT system[34] as PAD methods. These techniques 
include the ability to detect differences between fake layers placed on a finger and the real finger below, to 
map eccrine sweat glands on the fingertip, to detect additional layers placed on top of the skin and to extract 
reliable subsurface information from a real finger, which are not present in artificial fingerprints.

In addition to the aforementioned OCT-based PAD methods, other research has utilized short-wave 
infrared (SWIR) images, special lighting microscopes and terahertz time-domain spectroscopy (TDS).
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Hussein et al.[35] proposed a novel hardware-based method based on two sensing modalities, i.e., MS 
illumination in the SWIR spectrum (wavelength range from 1200 to 1550 nm) and laser speckle contrast 
imaging (LSCI). The authors evaluated the effectiveness of both modalities by developing a touchless 
prototype fingerprint imaging system that was designed to capture images in the visible domain for 
verification, and in the SWIR domain and LSCI for FPAD. The capture device was used to collect data from 
778 finger samples (551 bona fide and 227 PA), covering 17 different attack species. To evaluate the 
effectiveness of the capture device, the authors utilized a patch-based convolutional neural network on the 
two sensing modalities and the results were promising.

Tolosana et al.[36] proposed a novel fingerprint presentation attack detection method based on convolutional 
neural networks (CNNs) and SWIR multi-spectral images. Based on an analysis of the intra- and interclass 
variability, two SWIR wavelengths and their combination were selected as input for the network. The 
experimental evaluation yields a BPCER of 0% (i.e., a highly convenient system) and an APCER of 0% 
simultaneously (i.e., highly secure). Although the results are excellent, more experiments should be made on 
a larger database, comprising more PAIs and more bona fide samples, in order to further test the 
performance of the algorithm for both known and unknown attacks.

Gomez-Barrero et al.[37] introduced another PAD scheme that utilized SWIR spectral images of the finger 
and the inside of it using LSCI technology. For the classification of the fingerprint as bona fide or artificial, 
the fusion with a weighted sum of several features and classifiers depending on the input of the scheme was 
used. They evaluated their method on a custom dataset whilst including unknown PA showed a less than 
0.1% BPCER and an APCER of ~3%.

Tolosana et al.[38], in an extension of their work in[36], introduced a novel capture device capable of acquiring 
fingerprint samples in the SWIR spectrum. They experimented with three CNN architectures: (1) a residual 
CNN both trained from scratch and pretrained; (2) VGG19[39]; and (3) MobileNet[40]. The optimal 
performance was exhibited with the fusion of the residual CNN trained from scratch and the VGG19 
architecture on a dataset comprised of 4700 samples and with the assumption that five PAI species were not 
used in the training and were considered as unknown PAI. This architecture achieved an APCER of ~7% for 
a BPCER of 0.1% if user convenience was the top priority and a BPCER of 2% for any APCER under 0.5% 
when security took precedence.

Goicoechea-Telleria et al.[41] proposed a low-cost PAD subsystem using special lighting microscopes with 
only one wavelength (575 nm) with a filter (610 nm) and took only the red channel. This resulted in low 
APCER and BPCER values, i.e., an APCER of 1.78% and a BPCER of 1.33% at 70% training. Moreover, all 
iterations of classifying the 480/510 nm wavelength of the blue channel have shown a BPCER of 0.00%. 
Furthermore, it was discovered that Play-Doh artefacts were very easily detected with this approach. 
Although the aforementioned results are promising, the system has to be thoroughly tested with a larger 
dataset.

To facilitate the exploration of novel fingerprint PAD techniques involving both hardware and software, 
Engelsma et al.[42] designed and prototyped a low-cost custom fingerprint reader, known as RaspiReader, 
with ubiquitous components. RaspiReader has two cameras for fingerprint image acquisition. One camera 
provides high-contrast frustrated total internal reflection (FTIR) fingerprint images and the other outputs 
direct images of the finger in contact with the platen. Using both of these image streams, the discriminative 
color local binary patterns (CLBP) from both raw images were extracted which, when fused together, 
matched the performance of state-of-the-art PAD methods (CNN). Moreover, fingerprint matching 
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experiments between images acquired from the FTIR output of RaspiReader and images acquired from a 
commercial off-the-shelf (COTS) reader verified the interoperability of the RaspiReader with existing COTS 
optical readers.

Pałka and Kowalski[43] used a TDS setup in a reflection configuration for the non-intrusive detection of 
fingerprint PAs. More specifically, the authors studied the interaction of terahertz radiation with the friction 
ridge skin of finger pads and with artificial samples. Moreover, five common PA materials were used and 
their complex refractive indices were determined. It was proved that both the reflected time signals and the 
reflectance spectra of the imitations differ significantly from the living fingers of 16 people. Based on the 
conducted analysis, two PAD methods were proposed. The first method was based on a time-frequency 
feature analysis and achieved a TDR of 87.9% and an FDR of 3.9%. The second method was based on a deep 
learning classifier applied to reflectance spectra, with a second criterion based on reflected signals in the 
time domain. The second method with five-fold cross validation provided excellent classification with a 
TDR of 98.8%. The second method was also validated using the cross-material scenario and achieved 
slightly lower results with a TDRs of 98.7% and 93.2% for silicone, latex and plasticine samples (Group I) 
and gelatin, Play-Doh and water-based samples (Group II), respectively.

Spinoulas et al.[44] explored the effectiveness of PAD schemes in front-illumination imaging using short-
wave-infrared, near-infrared and laser illumination and back-illumination imaging using near-infrared 
light. Their architecture utilized a memory efficient fully convolutional neural network (FCN). The 
effectiveness of the FCN was first validated on the LivDet 2015 dataset. They concluded that in the case of 
unknown PAIs, front-illuminated multi-spectral images (visible, NIR and SWIR) presented the best 
performance, either individually or in fusion with other modalities used in this study to capture the 
fingerprint image.

Other hardware-based solutions, such as the capture means of biological signals of life, like blood flow and 
pulse rate detection[45] and electrocardiogram (ECG)[46] or electroencephalogram (EEG) signals[47], are also 
discussed in the literature. However, all the biological signals either require expensive capture equipment or 
in some cases[48] may add a time delay to the user authentication process.

PAD methods make biometric systems securer and resistant to attacks. Nevertheless, due to their limitations 
and given the fact that they are not immune to PAs, software-based solutions have been proposed to 
enhance security and avoid any modifications to the hardware.

SOFTWARE-BASED PRESENTATION ATTACK DETECTION
Software-based PAD methods utilize algorithms to detect artificial fingerprints once the sample has been 
acquired by the sensor. A typical PAD follows the procedure of capturing the sample, preprocessing and 
decision, as shown in Figure 5.

It must be noted that in many cases, the feature extraction from the captured data and the classification can 
be performed from the same system, e.g., from a convolutional neural network.

The categorization of software-based PAD approaches presented here was inspired by Refs.[8,9]. Software-
based PAD methods can be divided into two major categories: dynamic and static.
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Figure 5. A generic presentation attack detection scheme.

Dynamic methods
Dynamic PAD methods utilize dynamic features. These features change over time and for their extraction, a 
time-series sequence of images or video of the fingerprint is required. This is opposed to static methods that 
classify bona fide or artificial presentations according to the data acquired from a single image. Dynamic 
methods present the ability to detect and measure vitality signs that can distinguish between bona fide and 
artificial fingerprints. These signs include the perspiration phenomenon, skin elasticity deformation and the 
displacement of blood that occurs when a finger is under pressure. Table 2 summarizes the discussed 
methods.

Abhyankar and Schuckers[20] proposed a PAD method based on the perspiration phenomenon and utilized 
two samples captured in a time series of 0 and 5 s. The coefficients of Daubechies wavelet analysis using the 
zoom-in property were utilized to reflect the perspiration pattern. A threshold was applied to the first 
difference of the information in all the sub-bands. A dataset consisting of 30 live, 30 artificial and 14 cadaver 
fingerprint samples was utilized, where half of the data were used for training and the other half for 
evaluation. The proposed method achieved an FLR of 0% and an FSA of 0% at threshold levels of 44.55, 
40.75 and 31.6 for an optical scanner, a capacitive DC scanner and an opto-electrical scanner, respectively.

Antonelli et al.[49] proposed a PAD method based on skin elasticity/distortion. This method requires that the 
user moves their finger while applying force to the scanner in order to maximize skin distortion. The 
proposed method was evaluated on a dataset comprising of ten image sequences of each finger (thumb and 
forefinger of the right hand) of 45 volunteers and ten image sequences of 40 artificial fingers, and achieved 
an EER of 11.24%.

Jia et al.[50] introduced a novel PAD method based on skin elasticity. This method was based on two features 
that represent skin elasticity acquired from a two-image sequence. The utilized features were the correlation 
coefficient of the fingerprint area, the average image signal intensity and the standard deviation of the 
fingerprint area extension in the x and y axes. The classification was accomplished with Fisher’s linear 
discriminant analysis. This method achieved an EER of 4.78% on a dataset comprised of 770 image 
sequences.

Zhang et al.[51] proposed a PAD method based on finger skin elasticity analysis and utilized the thin-plate 
spline model. This method exhibited an EER of 4.5% on a dataset of image sequences recorded from 120 
artificial fingers from 20 volunteers and the corresponding real fingers.

DeCann et al.[52] proposed a PAD method that quantified the perspiration phenomenon and it was based on 
a time-series sequence of acquired fingerprint samples with a 1 s interval. It used region labeling on the first 
image capture whilst the second capture was comprised of three images (absolute, positive and negative). A 
neural network was utilized for classification. A dataset of 1526 bona fide and 1588 artificial fingerprints 
from 150 volunteers was used for evaluation and the proposed method achieved an EER of 4.5%.
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Table 2. Dynamic methods

Ref. Year Dataset Method Results

Abhyankar and 
Schuckers[20]

2004 Own 
dataset

Detection of perspiration phenomenon FLR of 0% and FSA of 0% at threshold levels of 44.55, 
40.75 and 31.6 of optical, capacitive DC scanner and opto-
electrical scanner, respectively

Antonelli et al.[49] 2006 Own 
dataset

Skin elasticity/distortion EER of 11.24%

Jia et al.[50] 2007 Own 
dataset

Skin elasticity EER of 4.78%

Zhang et al.[51] 2007 Own 
dataset

Skin elasticity EER of 4.5%

DeCann et al.[52] 2009 Own 
dataset

Detection of perspiration phenomenon EER of 4.5%

Nikam and 
Agarwal[53]

2009 Own 
dataset

Detection of perspiration phenomenon Classification accuracy of 97.92% for live and of 99.10% 
for artificial samples

Abhyankar and 
Schuckers[54]

2009 Own 
dataset

Detection of perspiration phenomenon EER of 0.03% while incorporated to verifinger scanner. 
Exhibited a 13.82% improvement to the scanner’s EER 
performance

Abhyankar and 
Schuckers[55]

2010 Own 
dataset

Detection of perspiration phenomenon Classification rate of 93.7%

Marcialis et al.[56] 2010 Own 
dataset

Detection of sweat pores Qualitative interpretation of the results

Memon et al.[57] 2011 NIST4, 
BFBIG-DB1

Detection of active sweat pores Qualitative interpretation of the results

Husseis et al.[59] 2020 Own 
dataset

Extraction of eight global measures that 
included intensity, contrast, and 
randomness

BPCER of 18.1% at 5% APCER for thermal sensor 
BPCER of 19.5% at 5% APCER for optical sensor

Husseis et al.[60] 2021 Own 
dataset

Extraction of five spatiotemporal features BPCER of 3.89% at 5% APCER for thermal sensor 
BPCER of 1.11% at 5% APCER for optical sensor

FLR: False live rejection; FSA: false spoof acceptance; EER: equal error rate; BPCER: bona fide presentation classification error rate.

Nikam and Agarwal[53] introduced a perspiration detection algorithm that relies on the processing of the 
ridge lines of the fingerprint in the wavelet domain by utilizing a time-series image capture sequence of 2 or 
4 s. A neural network, support vector machine (SVM) and K-nearest neighbor algorithm (K-NN) were 
utilized as classifiers. On a dataset of sequences of image captures from 340 real, 260 gummy and 195 Fun-
Doh artificial fingers, the proposed method exhibited a classification accuracy of 97.92% for bona fide 
samples and 99.10% for artificial samples, with the use of an SVM for classification.

Abhyankar and Schuckers[54] proposed a PAD method that detected the perspiration changes along the 
fingerprint ridges from fingerprint samples captured at 0 and 2 s. The measures used to classify a fingerprint 
as artificial or not were the Daubechies wavelet transform, the multiresolution analysis and the wavelet 
packet transform, which were used to isolate the changes in perspiration based on the total energy 
distribution. A dataset of sequences of images of 58 live, 50 artificial and 28 cadaver fingerprints was 
utilized. The method exhibited an EER of 0.03% when it was incorporated into the commercially available 
“verifinger” matcher. The “verifinger” matcher without this incorporation achieved an EER of 13.85%.

Abhyankar and Schuckers[55] utilized a time-series fingerprint image, captured with a 2-time interval in 
order to use the perspiration phenomenon to classify fingerprints as bona fide or not. This method was 
based on the detection of the signal changes of singularity points that were found with the use of wavelets. 
The method was evaluated on a dataset of 58 bona fide, 50 artificial and 28 cadaver time-series fingerprint 
samples and achieved a 93.7% correct classification rate.
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Marcialis et al.[56] proposed a PAD method based on the detection of sweat pores. This was a two-step 
procedure that evolved the time series capture of two samples in a 5 s interval. The authors utilized the 
difference in the number of pores of each region of interest (ROI) between the captured samples (four 
features), along with the average Euclidean distances among pores in the second sample (three features). 
Therefore, a seven-dimensional feature vector was formed, which was utilized to train a K-NN classifier and 
a multi-layer perceptron (MLP). The experimental results on their own dataset consisting of 8960 bona fide 
and 7760 artificial fingerprint samples showed that analyzing the location of pores for PAD is a promising 
technique.

Memon et al.[57] developed a system that can detect active sweat pores to determine whether a fingerprint is 
bona fide or artificial. Two fingerprint images with a 2 s time interval were utilized in conjunction with an 
image processing algorithm that depends on high pass and correlation filtering, followed by binarization. 
The efficiency of this method is negatively correlated to the threshold value of binarization. Alternatively, 
the discrimination ability is positively correlated with the threshold. The algorithm was tested on the 
NIST4[58] and BFBIG-DB1[57] databases.

Husseis et al.[59] used eight global measures that included intensity, contrast and randomness. These features 
were extracted from fingerprint videos. For the evaluation of the proposed method, 792 bona fide 
presentations and 2772 attack presentations were collected from thermal and optical sensors and used as a 
dynamic dataset. An SVM, linear discriminant analysis (LDA) and ensemble learning were used for 
classification. This PAD method achieved a performance of 18.1% BPCER for the thermal subset and 19.5% 
BPCER for the optical subset at 5% APCER when an SVM was used for classification.

Husseis et al.[60], in an extension of their previous work[59], utilized videos of fingerprints to extract five 
spatiotemporal features that allowed them to detect PAIs. An SVM with a second-degree polynomial kernel 
was used for classification. This method achieved a BPCER of 1.11% for an optical sensor and a BPCER of 
3.89% for a thermal sensor at 5% APCER for both sensors on their own dataset.

Static methods
Static PAD methods rely on features extracted from a single fingerprint image. These features are unique 
and do not change over time. Depending on the technique or the type of features or the type of classification 
method used (e.g., neural networks, deep learning and so on), static methods can be further divided into 
those that utilize anatomical or physiological features, image quality features, textural features, neural 
networks, fusion of features and generalization efficient/wrapper methods. The latter category describes the 
methods that focus on performance against PAIs not seen in training. Some of them can be combined with 
the ones from the first five categories to improve the overall system performance, especially against PAI 
species made with unknown materials.

Anatomical or physiological features
This section describes state-of-the-art PAD methods, where anatomical or physiological features, such as 
sweat pores and perspiration, are utilized to determine if a fingerprint is real or artificial. The detection 
schemes are mainly focused on sweat pores [Figure 6] or perspiration. The term sweat pore describes tiny 
openings in the skin where sweat reaches the surface from their respective glands below. Perspiration is a 
phenomenon where sweat starts from the pores and scatters along ridges. Thus, regions between pores 
become darker. Modern PAD methods exploit this property and by observing numerous samples, they can 
capture a perspiration pattern that indicates whether a finger is real or not. Table 3 summarizes the 
presented methods.
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Table 3. Anatomical features

Ref. Year Dataset Method Results

Tan and 
Schuckers[21]

2010 Own dataset Perspiration. Ridge signal and valley noise analysis EER of 0.9%

Espinoza and 
Champod[61]

2011 Own dataset Pores of the skin 21.2% FAR and 8.3% FRR

Memon et al.[57] 2011 NIST4, 
BFBIG-DB1

Active sweat pores Qualitative interpretation of the 
results

Marasco and 
Sansone[62]

2012 LivDet 2009 Feature set combined of (1) residual noise (2) first order statistics 
(3) the intensity distribution and (4) individual pore spacing

ACE of 12.5%

Pereira et al.[63] 2012 Own dataset Combination of features sets proposed in Refs.[64,65] Improved performance by 33.56% 
ACE of 4.17% for the SVM and of 
4.27% for the MLP 
(Single attempt for acceptance 
scenario)

Marcialis et al.[67] 2012 LivDet 2009 Features that are encountered in the production of artificial 
fingers

Promising results

Johnson and 
Schuckers[68]

2014 LivDet 2011, 
2013

Perspiration based presentation attack detector EER of 12% on the LivDet 2011 and 
of 12.7% on the LivDet 2013

Lu et al.[69] 2015 LivDet 2011, 
ATVS

Five statistical pore distribution features ACE of 7.11% on the LivDet 2011, 
ACE of 11.4% on the ATVS

EER: Equal error rate; FAR: false acceptance rate; FRR: false rejection rate; ACE: average classification error; SVM: support vector machine.

Figure 6. (A) Fingerprint image and (B) pores[56].

Tan and Schuckers[21] proposed a detection scheme based on perspiration and utilized ridge signal and 
valley noise analysis. Gray level patterns in spatial, frequency and wavelet domains in combination with 
classification trees and neural networks were used for the detection. The proposed scheme achieved an EER 
of 0.9% on their own dataset comprised of 644 bona fide and 570 artificial fingerprint samples.

Espinoza and Champod[61] proved that the pores of the skin of a fingerprint can be used as a feature that can 
discriminate bona fide and artificial fingerprints. The discriminative factor in their PAD scheme was the 
difference between the total number of pores in bona fide and artificial fingerprint samples. Their method 
achieved a 21.2% FAR and an 8.3% FRR using their own dataset.

Marasco and Sansone[62] utilized a feature set combined of the residual noise of the fingerprint image to 
detect the coarseness of the artificial fingerprint, first-order statistics based on the gray level of each pixel, 
the intensity distribution to detect PAIs and the individual pore spacing, which is unique to every human. 
An SVM, decision tree, MLP and Bayesian classifier were chosen as classifiers, depending on the best 
performance per sensor. This method outperformed other approaches, exhibiting an ACE of 12.5% on the 
LivDet 2009 dataset, and offered significant gains in speed.
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Pereira et al.[63] used a combination of feature sets proposed in Refs.[64,65]. The 17-dimensional feature vector 
was minimized with the sequential forward selection technique[66]. A SVM and a MLP were used. The 
authors concluded that the proposed feature set improved performance by 33.56% and the ACE was 
increased as more attempts for authentication were allowed. The best performance was reached on a single 
attempt for the acceptance scenario and it exhibited an ACE of 4.17% for a SVM and 4.27% for a MLP 
classifier. Furthermore, the SVM performed better in general as a classifier, except on biometrics acquired 
from elderly people where the MLP performed better.

Marcialis et al.[67] proposed the utilization of features that are encountered in the production of artificial 
fingers. They utilized the Fourier power spectrum of the fingerprint image and concluded that these features 
can be relevant for discriminating bona fide fingerprints from artificial ones. Moreover, the fusion of 
features extracted from PAIs and bona fide presentations showed a significant improvement in 
performance. Their method was evaluated on the LivDet 2009 dataset and showed promising results.

Johnson and Schuckers[68] proposed a perspiration-based PAD. After detecting the pores, a small 
surrounding area of the pore was inspected to ascertain the perspiration activity. A SVM classifier with a 
radial basis function kernel was utilized and the method was evaluated on the LivDet 2011-2013 datasets. 
Experimental results showed that the method performed well, especially when combined with other PAD 
techniques. More specifically, the best approach exhibited an EER of 12% on the LivDet 2011 and an EER of 
12.7% on the LivDet 2013.

Lu et al.[69] proposed a method where after the extraction of pore information using a Mexican hat (Mexh) 
wavelet transform and adaptive Gaussian filters, five statistical pore distribution features were utilized. 
These features were the pore number (total amount of pores), pore density, mean pore space, variance and 
the variation coefficient. A SVM was used for classification. This technique exhibited an ACE of 7.11% on 
the LivDet 2011 and an ACE of 11.4% on the ATVS datasets. Table 3 summarizes the aforementioned PAD 
techniques.

Image quality features
In this section, we present the state-of-the-art PAD methods that seek to find detectable differences in the 
scans of a living finger in comparison to an artificial one. Measures like continuity, clarity and strength of 
valleys and ridges are being utilized for anti-spoofing. Typically, features extracted from ridge-valleys are 
utilized but other features were proposed as well, as shown in Table 4. The advantages of these methods are 
the simplicity, low computational complexity and fast response times[14].

Tan[70] proposed a PAD method that utilized noise analysis along the valleys in the ridge-valley structure of 
fingerprint images. Wavelet decomposition was utilized to acquire statistical features in multiresolution 
scales. Decision trees and neural networks were used for classification, while two datasets were used for 
evaluation. The first one was comprised of 58 live, 80 artificial and 25 cadaver samples, whilst the second 
included 28 bona fide and 28 artificial fingerprints. This method exhibited a correct classification rate from 
90.9% to 100% depending on the technology of the scanner.

Galbally et al.[71] proposed a PAD method that utilized ten different quality features of the image that 
depend on the ridge strength, continuity and clarity. LDA was used as a classifier. This method achieved an 
ACE of 6.56% on the LivDet 2009 dataset.
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Table 4. Image quality features

Ref. Year Dataset Features Results

Tan[70] 2008 Own dataset Noise analysis along the valleys in the ridge-valley structure 
of fingerprint images

Correct classification rate from 90.9% 
to 100% depending on the technology 
of the scanner

Galbally et al.[71] 2009 LivDet 2009 Ten different quality features of the image that depend on 
Ridge-strength, Ridge-continuity and Ridge-clarity

ACE of 6.56%

Lee et al.[72] 2009 Own dataset The standard deviation of the fractional Fourier transform of 
a line that was detected when a fingerprint image was 
transformed into the spatial frequency domain

Error rate of 11.4%

Jin et al.[73] 2011 BERC Fusion of spectral band, middle ridge and valley line Classification error rate approx. 6%

Galbally et al.[75] 2012 LivDet 2009, 
ATVS

Ridge strength, ridge continuity, ridge clarity, integrity of the 
ridge-valley structure

ACE of 12.5% on the LivDet 2009 
ACE on the ATVS was 5.4%

Galbally et al.[76] 2014 LivDet 2009 25 image quality features APCER < 13% and BPCER ≤ 14%

Sharma and 
Dey[77]

2019 LivDet 2009, 
2011, 2013, 
2015

13 quality features that depend on the ridge-valley shape ACE of 5.3% on the LivDet 2009 
ACE of 7.80% on the LivDet 2011 
ACE of 7.4% on the LivDet 2013 
ACE of 4.2% on the LivDet 2015

ACE: Average classification error; APCER: attack presentation classification error rate; BPCER: bona fide presentation classification error rate; 
BERC: Biometrics Engineering Research Center.

Lee et al.[72] proposed a novel PAD method that measured the standard deviation of the fractional Fourier 
transform of a line, which was detected when a fingerprint image was transformed into the spatial frequency 
domain. This transformation was accomplished with the use of a two-dimensional fast Fourier transform. 
For a dataset of 3750 bona fide and artificial fingerprint samples in total, this method exhibited an error rate 
of 11.4% when a certain region was utilized after the fractional Fourier transform.

In Ref.[73], a method based on the fusion of the spectral band, middle ridge and valley line was proposed. 
SVMs and quadratic classifiers were used for the classification. This system was tested on the Biometrics 
Engineering Research Center dataset[74] and exhibited better security than other fingerprint recognition 
schemes. It also has the advantage that it uses only one fingerprint. A classification error of ~6% was 
exhibited with the utilization of all three proposed features.

In Ref.[75], image quality features that depend on the ridge strength, directionality, continuity and clarity and 
the integrity of the ridge-valley structure or estimated verification were measured to classify a fingerprint as 
artificial or not. The classification was performed by a LDA classifier. More specifically, their method 
showed ACEs of 12.5% and 5.4% on the LivDet 2009 and ATVS datasets, respectively. Compared to other 
similar methods, the fact that only one sample is needed, makes the sample acquisition process faster and 
less invasive.

In another work of Galbally et al.[76], 25 image quality features were utilized to discriminate bona fide 
samples from artificial ones. Their method was tested on the LivDet 2009 dataset and achieved an APCER of 
< 13% and a BPCER of ≤ 14%.

Sharma and Dey[77] proposed an architecture that utilized five novel and eight existing quality features that 
depend on the ridge-valley shape and are sensor independent. Thus, a 13-dimensional feature vector was 
formed and a sequential forward floating selection (SFFS) and a random forest feature selection algorithm 
were deployed to select the optimal feature set. A SVM, random forest and gradient boosted tree were 
utilized for classification. This approach showed ACEs of 5.3% on LivDet 2009, 7.80% on LivDet 2011, 7.4% 
on LivDet 2013 and 4.2% on LivDet 2015.
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Textural features
Researchers have found that the textural features [Figure 7] of the fingertip, such as smoothness and 
morphology, can be used to distinguish real fingerprints from artificial ones[78,79]. Methods belonging to this 
category make use of such textural features. The extracted features are then presented as input to a classifier, 
which in most cases is an SVM. These methods are described below and summarized in Table 5.

Nikam and Agarwal[22] utilized curvelet features, such as energy, co-occurrence and fused signatures, to 
discriminate bona fide samples from artificial ones. To limit the dimensionality of the feature vector, they 
applied an SFFS algorithm. An ensemble classifier, on the basis of the “majority voting rule”, of three 
independent classifiers, namely, AdaBoost.M1, an SVM and an alternating decision tree, was used for 
classification. Their method was tested on their own dataset comprising of 185 bona fide and 240 artificial 
samples and on the FVC 2004[80] dataset comprised of only bona fide samples. When the fusion of energy 
and co-occurrence signatures occurred, the proposed technique achieved a 99.29% correct classification 
rate, which outperformed the wavelet and power spectrum PAD techniques.

Ghiani et al.[81] proposed a new feature set, extracted by the deployment of the textural analysis of the 
acquired image spectrum, known as rotation invariant local phase quantization (LPQ). This method 
exhibited an average EER of 12.3% on the LivDet 2011 dataset.

Gragnaniello et al.[82] used textural classification by utilizing the Weber local descriptor (WLD). A linear 
kernel SVM classifier was used for classification. The classifier was trained on discriminative features build 
from the joint histograms of the differential excitation and orientation of every pixel of the acquired sample. 
This method presented good performance and it was further improved with the integration of other LPQ 
descriptors, especially if the latter relied on different image attributes. The ACE concerning WLD was 
2.95%, while when the WLD and LPQ were combined, the ACE was 1.14% on the LivDet 2009 dataset. 
Experimental results on the LivDet 2011 dataset showed an ACE of 15.33% for the WLD, while the ACE for 
the fusion of the WLD and LPQ descriptors was 7.86%.

Jia et al.[83] developed a descriptor known as multi-scale block local ternary patterns that depend on the 
average value of the pixel blocks. The differences amongst the pixels and the threshold constitute the ternary 
pattern. This method showed an ACE of 9.8% on the LivDet 2011 dataset.

Pereira et al.[84] proposed spatial surface coarseness analysis (SSCA). SSCA is based on wavelet analysis of 
the fingerprint surface with the addition of spatial features. A polynomial kernel SVM was used for 
classification. SSCA exhibited an ACE of 12.8% on the LivDet 2011 dataset.

Ghiani et al.[85] introduced a novel descriptor known as binarized statistical image features (BSIFs). This 
descriptor encodes the local fingerprint texture on a feature vector. This method was evaluated on the 
LivDet 2011 dataset and achieved an EER of 7.215% when a 7 × 7 window size was used in conjunction with 
a 4096-dimensional feature vector.

Jia et al.[86] introduced a novel descriptor known as a multi-scale local binary pattern (MSLBP). The MSLBP 
can be implemented in two ways and both can achieve good performance for PAD. They tested MSLBP on 
the LivDet datasets and the best MSLBP implementation exhibited an ACE of 7.475%.
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Table 5. Textural features

Ref. Year Dataset Method Results

Nikam and Agarwal[22] 2010 Own dataset Curvelet features such as energy, co-
occurrence and fused signatures

99.29% classification rate

Ghiani et al.[81] 2012 LivDet 2011 Textural analysis of the acquired image 
spectrum

Average EER of 12.3%

Gragnaniello et al.[82] 2013 LivDet 2009, 2011 WLD ACE was 1.14% on LivDet 2009 datasets, 
ACE of 15.33% (WLD) and 7.86% (WLD + 
LPQ) on the LivDet 2011

Jia et al.[83] 2013 LivDet 2011 Multi-scale block local ternary patterns ACE of 9.8%

Pereira et al.[84] 2013 LivDet 2011 Spatial surface coarseness analysis ACE of 12.8%

Ghiani et al.[85] 2013 LivDet 2011 Binarized statistical image features EER of 7.215%

Jia et al.[86] 2014 LivDet 2011 Multi-scale local binary pattern ACE of 7.475%

Gragnaniello et al.[87] 2014 LivDet 2009 Wavelet-Markov local descriptor ACE of 2.8%

Zhang et al.[88] 2014 LivDet 2011, 2013 Wavelet analysis and LBP ACE of 11.47% on the LivDet 2011 
ACE of 11.02% on the LivDet 2013

Gottschlich et al.[89] 2014 LivDet 2013 Histograms of invariant gradients ACE of 12.2%

Jiang and Liu[90] 2015 LivDet 2009, 2011 Co-occurrence matrices from image 
gradients

ACE of 6.8% on the LivDet 2009 
ACE of 10.98% on the LivDet 2011

Gragnaniello et al.[91] 2015 LivDet 2011 Local contrast phase descriptor ACE of 5.7%

Gottschlich[92] 2016 LivDet 2013 Convolution comparison pattern Accuracy of 93%

Dubey et al.[93] 2016 LivDet 2011, 2013 SURF features and pyramid extension of the 
histograms of oriented gradient in 
conjunction with texture features

EER of 3.95% on the LivDet 2011 
ACE of 2.27% on the LivDet 2013

Yuan et al.[94] 2016 LivDet 2009, 
2011, 2013

Angular second moment, entropy, inverse 
differential moment and correlation to form 
the feature vector

ACE of 15.32% on the LivDet 2013, 
ACE of 9.28% on the LivDet 2011, 
ACE% of 7.92 on the LivDet 2009

Kim and Jung[95] 2016 LivDet 2009, 2011 Local accumulate smoothing pattern 
descriptor

Classification rate of 88.49% on the LivDet 
2009 and of 78.78% on the LivDet 2011

Ghiani et al.[96] 2017 LivDet 2009, 
2011, 2013

Binarized statistical image features ACE of 3.03% on the LivDet 2009 
ACE of 9.62% on the LivDet 2011 
ACE of 5.71% on the LivDet 2013

Kim[97] 2017 ATVS, LivDet 
2009, 2011, 2013, 
2015

Local coherence patterns Accuracy of 93.49% on the ATVS dataset 
and of 78.02% on the LivDet datasets

Kumpituck et al.[98] 2017 LivDet 2009, 
2013

Wavelet-based local binary pattern ACE of 9.95% on the LivDet 2009-2013 
datasets

Xia et al.[99] 2017 LivDet 2009, 2011 Co-occurrence matrices from image 
gradients

ACE of 6.2% on the LivDet 2009 
ACE of 6.635% on the LivDet 2011

González-Soler et al.[100] 2017 LivDet 2011 SIFT features encoded with a spatial 
histogram of visual words

ACE of 4.7%

Kundargi and 
Karandikar[101]

2018 LivDet 2011 Local binary pattern texture descriptor with 
wavelet transform

ACE of 8.3%

Jiang and Liu[102] 2018 LivDet 2011 Uniform local binary pattern in three-layer 
spatial Gaussian pyramids

ACE of 21.205%

Mehboob et al.[103] 2018 LivDet 2011 Combined Shepard magnitude and 
orientation

Average error rate of 5.8, 2.2, and 5.3 on the 
LivDet 2011, 2013, and 2015, respectively

Xia et al.[104] 2020 LivDet 2011, 2013, 
2015

Weber local binary descriptor ACE of 9.6775% on the LivDet 2015 
ACE of 1.89% on the LivDet 2013 
ACE of 5.96% on the LivDet 2011

Tan et al.[105] 2020 LivDet 2011, 2013 Guided filtering and hybrid image analysis Average accuracy of 94.33% on the LivDet 
2011 and of 98.08% on the LivDet 2013

Kumar and Singh[107] 2020 ATVS, FVC 2000, 
2002, 2004

Presentation attack detection module 
utilizing supervised learning with minutiae 
extraction

Average performance of 96.06%

WLD: Weber local descriptor; EER: equal error rate; LPQ: local phase quantization; ACE: average classification error; SIFT: scale invariant feature 
transform; SURF: speeded-up robust feature.
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Figure 7. Textural characteristics of a real fingerprint image[22].

Gragnaniello et al.[87] developed a method based on the wavelet-Markov local descriptor. The feature vector 
was formed by exploiting joint dependencies among wavelet coefficients. To limit the dimensionality of the 
feature vector, principal component analysis (PCA) was used. An SVM classifier achieved an ACE of 2.8% 
on the LivDet 2009 dataset.

Zhang et al.[88] proposed a method that depends on wavelet analysis and LBP. Wavelet analysis was applied 
to produce the denoised image and the residual noise image. The LBP histograms were constructed based 
on the residual noise and denoised images. An SVM based on a polynomial kernel was deployed for 
classification. This approach offered ACEs of 11.47% on the LivDet 2011 and 11.02% on the LivDet 2013.

Gottschlich et al.[89] proposed a descriptor known as histograms of invariant gradients. Fingerprint 
discrimination was based on multiple histograms of invariant gradients, computed from spatial 
neighborhoods within the fingerprint. The best variation of the proposed method achieved an ACE of 12.2% 
on the LivDet 2013 dataset.

Jiang and Liu[90] used co-occurrence matrices from image gradients for feature extraction. The image was 
first quantized to decrease the dimensionality and increase the usefulness of the feature vector. Afterwards, 
the image differences were calculated from adjacent quantized pixels along the horizontal and vertical axes. 
These differences were then truncated in a range within a specific threshold. Finally, the truncated 
differences were used to produce the co-occurrence matrices, which were utilized as features. An SVM was 
trained on two datasets and the proposed method achieved ACEs of 6.8% and 10.98% on the LivDet 2009 
and 2011 datasets, respectively.

Gragnaniello et al.[91] developed a new local descriptor known as the local contrast phase. After the analysis 
of the acquired sample in the spatial and frequency domains, information on the local amplitude contrast 
and local behavior of the image was gathered depending on the selected transform coefficients. The two-
dimensional contrast-phase histogram crafted from the information collected in the previous stage was used 
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as a feature vector. A linear-kernel SVM classifier was utilized and an ACE of 5.7% was found for the LivDet 
2011 dataset.

Gottschlich[92] introduced a novel local image descriptor known as the convolution comparison pattern. 
This descriptor utilized rotation invariant image patches to compute the discrete cosine transform (DCT) 
and the comparison of pairs of two DCT coefficients to obtain binary patterns, which are summarized into 
histograms, comprised of the relative frequencies of pattern occurrences. The feature vector was acquired by 
the concatenation of multiple histograms and the classification was performed by an SVM. This descriptor, 
with the use of a specific configuration, achieved an accuracy of 93% on the LivDet 2013 dataset.

Dubey et al.[93] used low level gradient features collected with the utilization of speeded-up robust features 
and the pyramid extension of the histograms of oriented gradient in conjunction with textural features 
acquired with the use of Gabor wavelets. This architecture exhibited an EER of 3.95% on the LivDet 2011 
and achieved an ACE of 2.27% on the LivDet 2013 dataset.

Yuan et al.[94] proposed the angular second moment, entropy and inverse differential moment and 
correlation to form the feature vector. These parameters were used as textural features and were extracted 
from eight difference co-occurrence matrices. The proposed method achieved ACEs of 15.32% on the 
LivDet 2013 dataset, 9.28% on the LivDet 2011 dataset and 7.92% on the LivDet 2009 dataset.

Kim and Jung[95] proposed the local accumulate smoothing pattern descriptor. The feature vector of this 
classifier was based on the local textural patterns, as they were represented by the accumulated smoothing 
space. A linear SVM classifier was used for classification. This architecture achieved a classification rate of 
88.49% on the LivDet 2009 dataset and of 78.78% on the LivDet 2011 dataset.

Ghiani et al.[96] suggested a descriptor entitled BSIFs. BSIFs share similarities to LBPs and LPQ, but the 
formed feature vector is based on a set of filters that are learnt from natural images. The proposed 
descriptor achieved ACEs of 3.03% on the LivDet 2009 dataset, 9.62% on the LivDet 2011 dataset and 5.71% 
on the LivDet 2013 dataset.

Kim[97] defined and utilized Local coherence patterns (LCPs) [Figure 8] as features in the dominant 
direction of the captured fingerprint image to determine if a fingerprint was artificial or not. This method 
exploited the fact that artificial fingerprints tend to disperse differently in the image gradient field than the 
bona fide ones. The classification was performed by a linear SVM. The LCP descriptor exhibited an 
accuracy of 93.49% on the ATVS Dataset and an accuracy of 78.02% on the LivDet 2009, 2011, 2013 and 
2015 datasets.

Kumpituck et al.[98] proposed the wavelet-based local binary pattern, which is based on the utilization of the 
LBP for capturing the local appearance of the sub-band images. Prior to the utilization of the LBP, the 
fingerprint image was decomposed by the two-dimensional discrete wavelet transform. An SVM was used 
for classification. The proposed method achieved an ACE of 9.95% on the LivDet 2009-2013 datasets.

Xia et al.[99] proposed a method that utilized co-occurrence matrices constructed from image gradients. 
Second and third-order co-occurrence matrices were used to train an SVM classifier. When third-order co-
occurrence matrices were utilized as features, the proposed architecture achieved ACEs of 6.2% on the 
LivDet 2009 and 6.635% on the LivDet 2011.
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Figure 8. Procedure for LCP. (A) Input; (B) filtered image; (C) LCP image; (D) feature extraction[97]. LCP: Local coherence pattern.

González-Soler et al.[100] proposed a method based on the bag of words algorithm. After extracting the scale 
invariant feature transform (SIFT) features, they encoded them with a spatial histogram of visual words. 
The classification was performed by a SVM through a feature map. This architecture achieved an ACE of 
4.7% on the LivDet 2011 dataset.

Kundargi and Karandikar[101] proposed a LBP texture descriptor with a wavelet transform that utilized the 
textural characteristics that differ in bona fide and artificial samples due to variations at the gray level of the 
image. The fingerprints were classified by linear and RBF kernel SVM classifiers. This method offered an 
ACE of 8.3% on the LivDet 2011 dataset.

Jiang and Liu[102] introduced a method that utilized the uniform local binary pattern in three-layer spatial 
Gaussian pyramids. This method achieved a 21.205% ACE on the LivDet 2011 dataset.

Mehboob et al.[103] proposed a novel descriptor known as the combined Shepard magnitude and orientation. 
This method extracts the global features of the fingerprint by computing the relation between the perceived 
Shepard magnitude and initial pixel intensities in the spatial domain. To achieve this, the fingerprint is 
considered as a two-dimensional vector. The descriptor first constructs perceived spatial stimuli by 
combining the logarithmic function of initial pixel intensities and the Shepard magnitude (SM) in the 
spatial domain. Next, the phase information (CO) is computed in the frequency domain. Finally, the SM 
and CO are concatenated and represented as a two-dimensional histogram. The rotation invariant version 
of LPQ was utilized for characteristic orientation computation. An SVM was used for classification and 
average error rates of 5.8%, 2.2% and 5.3% on the LivDet 2011, 2013 and 2015 datasets were achieved, 
respectively.

Xia et al.[104] also suggested a novel local descriptor entitled the Weber local binary descriptor (WLBD) that 
consists of two components that were used to extract intensity-variance and orientation features. The first is 
the local binary differential excitation module that captures the spatial structure of the local image patch 
and the second is the local binary gradient orientation module that is designed to extract gradient 
orientation from center-symmetric pixel pairs. The output of these components formed a discriminative 
feature vector [Figure 9] that was used as the input for an SVM classifier. The WLBD achieved ACEs of 
9.67% on the LivDet 2015 dataset, 1.89% on the LivDet 2013 dataset and 5.96% on the LivDet 2011 dataset.



Page 23Karampidis et al. J Surveill Secur Saf 2021;2:117-61 https://dx.doi.org/10.20517/jsss.2021.07

Figure 9. (A) Live fingerprint image. (B) WLD-DE, (C) LBP and (D) LBDE calculated from (A)[104].

In Ref.[105], a method utilizing the guided filtering and hybrid image analysis was proposed. After performing 
ROI extraction and guided filtering to acquire the denoised image, the co-occurrence of adjacent LBPs 
(CoALBPs)[106] descriptor was utilized to form the feature vector from the original and the denoised image. 
An SVM with an RBF kernel was used and the proposed method exhibited average accuracies of 94.33% on 
the LivDet 2011 and 98.08% on the LivDet 2013 datasets. Moreover, the computation time was 4.5 times 
faster in comparison to deep learning methods.

Kumar and Singh[107] proposed a fingerprint authentication system with a PAD module, utilizing supervised 
learning with minutiae extraction and classification with an SVM. Features like homogeneity, contrast, 
energy, entropy and mean last histogram were extracted. The proposed module achieved an average 
performance of 96.06% on the FVS[108] and ATVS datasets.

Neural networks
Neural networks have been used for PAD with great success. Most of these methods share the similarity of 
the segmentation of the background or foreground of the fingerprint image and the extraction of local 
patches of the image that include the ROI. In recent years, researchers utilized deep learning methods to 
detect PAs. Deep neural networks like CNNs have been extensively utilized for several security tasks like 
steganalysis[109,110], but nowadays they are also used for fingerprint PAD. CNNs are either utilized as feature 
extractors or even perform the classification. There are also proposed methods in the literature that use 
transfer learning. Transfer learning is the reuse of a pre-trained neural network on a new problem, i.e., it 
exploits the knowledge gained from a previous task to improve the generalization to another. Other 
methods exploit either generative adversarial networks (GANs) or restricted Boltzmann machines for PAD. 
Table 6 summarizes the state-of-the art methods that utilize a neural network (shallow or deep) as a feature 
extractor or classifier.

Menotti et al.[111] proposed a detection technique that utilized neural networks. One of their approaches 
utilized an optimized convolutional neural network and an SVM for classification. A second approach was 
based on the backpropagation algorithm for filter optimization. They concluded that the combination of the 
two approaches performed better and achieved an ACC of 98.97% on the LivDet 2013.

Nogueira et al.[112] proved that pretrained CNNs achieve high accuracy in PAD. In their work, they analyzed 
the false fingerprint detection performance of VGG[39] and AlexNet[113] [Figure 10] that were trained on 
natural images and further tuned with fingerprint samples. The LivDet 2009, 2011 and 2013 datasets were 
used and the proposed CNN-VGG showed an ACE of 2.9% and won the LivDet 2015 competition.
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Table 6. Neural networks

Ref. Year Dataset Neural network Results

Menotti et al.[111] 2015 LivDet 2013 Combination of CNN architecture and backpropagation 
algorithm for filter optimization

ACC of 98.97%

Nogueira et al.[112] 2016 LivDet 2009, 2011, 2013 CNN-VGG ACE of 2.9%

Kim et al.[114] 2016 LivDet 2013 Deep belief network ACC of 97.10%

Marasco et al.[115] 2016 LivDet 2013 3 CNNs CaffeNet (96.5%) 
GoogLeNet (96.6%) 
Siamese (93.1%)

Pala and Bhanu[117] 2017 LivDet 2009, 2011, 2013 Triplet of CNNs ACE 1.75%

Chugh et al.[18] 2018 LivDet 2011, 2015, MSU-FPAD, 
Precise Biometrics Spoof-Kit

CNN APCER < 7.3% and an 
BPCER = 1%

Jung and Heo[118] 2018 LivDet 2015 CNN Average accuracy 95.3%

Pinto et al.[119] 2018 LivDet 2009, 2013 Deep learning Not good generalization 
to unknown PAIs

Park et al.[120] 2018 LivDet 2011, 2013, 2015 Patch-based PAD method that utilized a fully 
convolutional neural network

ACE of 1.35%

Park et al.[121] 2019 LivDet 2011, 2013, 2015 CNN ACE of 1.43%

Zhang et al.[122] 2019 LivDet 2017 Residual convolutional neural network Accuracy of 95.25%

Yuan et al.[123] 2020 LivDet 2013, 2015 Autoencoders ACE of 19.62% on the 
LivDet 2013 
ACE of 18% on the 
LivDet 2015

Pereira et al.[124] 2020 LivDet 2015 GAN APCER of 0.60%

Uliyan et al.[125] 2020 LivDet 2013 Discriminative restricted Boltzmann machines in 
combination with deep Boltzmann machine

ACE of 3.6 %

Zhang et al.[126] 2020 LivDet 2013, 2015 CNN ACE of 1.76% over all 
sensors 
ACE of 0.25% on the 
LivDet 2013

Jian et al.[127] 2021 LivDet 2009-2015 Densely connected convolutional network (DenseNet) 
along with a genetic algorithm utilized for network 
optimization

98.22% accuracy

ACC: Average detection accuracy; CNN: convolutional neural network; BPCER: bona fide presentation classification error rate; APCER: attack 
presentation classification error rate; PAIs: presentation attack instruments; PAD: presentation attack detection; GAN: generative adversarial 
network.

Figure 10. AlexNet[113].

Kim et al.[114] proposed an architecture based on a deep belief network (DBN) with multiple layers of a 
restricted Boltzmann machine, trained on a set of bona fide and artificial samples. The proposed DBN, 
when trained with augmented data, achieved an average accuracy of 97.10% on the LivDet 2013 dataset.
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Marasco et al.[115] experimented on the effectiveness of CNNs as PAD methods. They tested three CNNs that 
achieved the best accuracy on the LivDet 2013 dataset, namely, CaffeNet (96.5%), GoogLeNet (96.6%) and 
Siamese (93.1%). They have also indicated that CNNs exhibited the ability to successfully adapt to PAD 
problems (if they were pre-trained on the ImageNet dataset[116]) and achieved an area under the curve in the 
range of -3.6% to +4.6%.

Pala and Bhanu[117] proposed a method based on a triplet of CNNs. Their method employs a variant of the 
triplet objective function that considers representations of fingerprint images, where the distance between 
feature points is used to discriminate artificial and bona fide samples. Their architecture scored an ACE of 
1.75% on the LivDet 2009, 2011 and 2013 datasets.

Chugh et al.[18] proposed a method that was based on CNNs and minutiae information. For the training of 
the CNN, aligned and centered local patches (96 × 96 pixels) were utilized. They defined a “spoofness” 
score, which is the output of the softmax layer of the trained CNN. The “spoofness” score had a range of 0 
to 1, where 1 denoted that the sample was artificial. They also crafted the Fingerprint Spoof Buster, which is 
a graphical user interface that permits the visual evaluation of the fingerprint by the human operator of the 
scanner. The proposed CNN was evaluated on the LivDet 2011, 2013 and 2015 datasets, as well as the MSU-
FPAD and Precise Biometrics Spoof-Kit datasets. Experimental results showed a significant reduction in 
error rates, with an APCER lower than 7.3% and a BPCER of 1%.

Jung and Heo[118] proposed a method, where the proposed CNN was trained directly from fingerprints, used 
the squared error layer and had no fully connected layer. The proposed architecture presented a higher 
average accuracy of 95.3% on the LivDet 2015 dataset compared to other existing methods.

Pinto et al.[119] utilized deep learning and concluded that it achieves very good performance in PAD tasks. 
The main drawback was the poor performance of deep learning when encountered PAs with instruments 
that were either not included at all or not included with a satisfactory number of samples in the training 
data. They also concluded that the best reliability is presented when models are based on both “hand-
crafted” and “data-driven” solutions.

Park et al.[120] proposed a patch-based PAD method that utilized a fully convolutional neural network, the 
so-called Fire module of SqueezeNet, which had fewer parameters and demands, with only 2.0 Mb of 
memory required. This method utilized an optimal threshold, as opposed to the voting method, which 
decreased the misdetection rate. This architecture achieved an ACE of 1.35% on the LivDet 2011, 2013 and 
2015 datasets, when the training was carried out through data augmentation and the patch size was 48 × 48 
pixels.

Park et al.[121] proposed a convolutional network known as the patch-based CNN because it utilizes patches 
(small ROIs) of the fingerprint image. They used three categories for classification, i.e., live, artificial and 
background. The proposed architecture, when used on 48 × 48 pixel patches, achieved an ACE of 1.43% on 
the LivDet 2011, 2013 and 2015 datasets in a radically reduced execution time.

Zhang et al.[122] proposed a lightweight residual convolutional neural network (Slim-ResCNN) that requires 
less processing time and is robust to overfitting. Local patch extraction was based on statistical histograms 
and the center of gravity. The proposed method exhibited an overall accuracy of 95.25% on the LivDet 2017 
dataset.
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Yuan et al.[123] proposed a real-time fingerprint PAD method based on autoencoders. Automatic feature 
extraction was performed with the use of a stacked autoencoder. Unsupervised learning was used for pre-
training, while the detection was performed with the use of supervised training. A Softmax classifier was 
utilized for classification. This method achieved ACEs of 19.62% on the LivDet 2013 and 18% on the LivDet 
2015.

Pereira et al.[124] tackled the PAD generalization problem, especially for PAs performed with materials not 
seen in training, with the use of an adversarial training methodology. The proposed method was evaluated 
with a MLP classifier and a CNN. The regularized CNN approach achieved an APCER of 0.60% on the 
LivDet 2015 dataset.

Uliyan et al.[125] utilized discriminative restricted Boltzmann machines (DRBMs) in combination with a deep 
Boltzmann machine (DBM) to extract deep features from the acquired samples. A K-NN classifier was used 
for classification. The proposed DRBM-DBM architecture exhibited an ACE of 3.6% on the LivDet 2013 
dataset.

Zhang et al.[126] proposed a lightweight CNN known as FLD to achieve improved PAD on new materials and 
to minimize complexity. To address the issue of global average pooling, an attention pooling layer was used. 
Moreover, a novel block structure (Block D&R) was introduced where the residual path is integrated into 
the original dense block. FLDNet exhibited ACEs of 1.76%, over all sensors, on the LivDet 2015 dataset and 
0.25% on the LivDet 2013 dataset.

Jian et al.[127] proposed a densely connected convolutional network (DenseNet) along with a genetic 
algorithm utilized for network optimization. The genetic algorithm can automatically optimize DenseNet by 
finding the optimal structure from the solution space. The proposed model achieved 98.22% accuracy on a 
testing set containing the LivDet 2009-2015 datasets.

Fusion of features
In this category, approaches that combine features from the different aforementioned categories are 
presented. Moreover, hybrid methods that utilize both static and dynamic features will be discussed[128-134]. 
These methods exploit the advantages and minimize the drawbacks of the aforementioned PAD methods, 
as these were presented in Dynamic methods, Anatomical or physiological features, Image quality features, 
Textural features and Neural networks. A summary of the presented methods is given in Table 7.

Derakhshani et al.[128] proposed a method that detected the perspiration phenomenon and it was based on 
static and dynamic features acquired from two fingerprint samples captured with a time interval of 5 s. One 
static and four dynamic features were used as input to a back-propagation neural network, which was 
utilized for classification. The dataset for training and testing was comprised of 18 sets of fingerprint 
samples from live individuals, 18 from cadavers and 18 from spoof materials. On this dataset, the proposed 
scheme achieved an accuracy of 100%.

Parthasaradhi et al.[129] proposed a method that depends on static features and on the changes due to 
perspiration to fingerprint images taken at 0, 2 and 5 s. By deploying a weight decade method during the 
training of a neural network classifier, they concluded that there was significant improvement in 
performance. On an image sequence dataset of 33 live subjects, 14 cadaver fingers and 33 artificial samples, 
their method achieved an FLR of 0% and an FSA in the range of 0%-18.2% depending on the sensor 
technology.
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Table 7. Fusion of features

Ref. Year Dataset Feature extraction Results

Derakhshani et al.[128] 2003 Own dataset Detection of perspiration phenomenon Accuracy of 100%

Parthasaradhi et al.[129] 2004 Own dataset Detection of perspiration phenomenon FLR of 0% and FSA in the range of 0%-18.2% depending on the sensor technology

Parthasaradhi et al.[130] 2005 Own dataset Detection of perspiration phenomenon FLR in the range of 6.77%-20%, FSA in the range of 5%-20% for optical, FLR in the range of 0%-26.9%, 
FSA in the range of 4.6%-14.3% for capacitive and FLR in the range of 6.9%-38.5%, FSA in the range of 
0%-19% for electro optical

Tan and Schuckers[131] 2005 Own dataset Static and dynamic features acquired from intensity 
histograms

FLR of 0%, FSA of 8.3% for optical sensor, FLR of 6.7%, FSA of 0% for capacitive sensor and FLR of 
7.7%, FSA of 5.3% for electro optical sensor

Tan and Schuckers[132] 2006 Own dataset Static and dynamic features acquired from intensity 
histograms

In the range of 90% to 100% for some scanners

Jia and Cai[133] 2007 Own dataset Detection of perspiration and skin elasticity EER of 4.49%

Plesh et al.[134] 2019 Own dataset Detection of perspiration, skin elasticity and 
displacement of blood

Mean APCER of 3.55 % at 1.0% BPCER, mean APCER of 0.626% at 0.2% BPCER and standard deviation 
of 1.96% at 1.0% BPCER

Nogueira et al.[136] 2014 LivDet 2009, 
2011, 2013

CNN and LBP for feature extraction ACE of 4.71%

Yuan et al.[137] 2019 LivDet 2013 BP neural network ACE of 6.78%

Agarwal and 
Chowdary[139]

2020 LivDet 2011 
dataset

Stacking and bagging ensemble learning approaches Stacking average accuracy was 80.76% 
Bagging average accuracy was 75.12%

Anusha et al.[140] 2020 LivDet 2011, 2013, 
2015, 2017

LBP and Gabor filters to extract features ACE of 0,48%, 0,84%, 0.28% and 1.16% on the LivDet 2017, 2015, 2013 and 2011, respectively

Agarwal and Bansal[143] 2020 LivDet 2013, 2015 Fusion of pores perspiration and texture features ACE of 0.1866% on the LivDet 2013 
ACE of 0.3233% on the LivDet 2015

Li et al.[144] 2020 LivDet 2011, 2013, 
2015

Features extraction with SIFT, LBP and HOG ACE of 4.6% on the LivDet 2011 
ACE of 3.48% on the LivDet 2013 
ACE of 4.03% the LivDet 2015

Sharma and Selwal[145] 2021 LivDet 2009, 
2011, 2013, 2015

Three local and adaptive textural image features 
acquired with the use of LABP, CLBP and BSIF texture 
descriptors

ACER of 4.11% on the LivDet 2009, ACER of 3.19% on the LivDet 2011, ACER of 2.88% on the LivDet 
2013, ACER of 2.97% on the LivDet 2015

FLR: False live rejection; FSA: false spoof acceptance; EER: equal error rate; APCER: attack presentation classification error rate; BPCER: bona fide presentation classification error rate; ACE: average classification 
error; CNN: convolutional neural network; LBP: local binary pattern; BP: backpropagation; SIFT: scale invariant feature transform; HOG: histograms of oriented gradients; ACER: average classification error rate.

In an extension of their previous work[129], Parthasaradhi et al.[130] used several classification methods, a shorter time window, a more diverse dataset and 
included other fingerprint sensor technologies. One static and six dynamic measures were used for classification and all classifiers achieved ~90% accuracy. 
More specifically, on a dataset of 75 samples per scanner, the proposed method achieved an FLR in the range of 6.77%-20% and an FSA in the range of 5%-20% 
for an optical scanner, and an FLR of 0%-26.9% and an FSA of 4.6%-14.3% for a capacitive scanner. Finally, the same method exhibited an FLR of 6.9%-38.5% 
and an FSA of 0%-19% for electro-optical scanners.
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Tan and Schuckers[131] proposed a PAD method that depends on the static and dynamic features acquired 
from intensity histograms of the 0 and 5 s images of a fingerprint. On a dataset of sequences of images (30 
bona fide, 40 artificial and 14 cadaver fingerprints) captured by three different scanners, their method 
exhibited an FLR of 0% and an FSA of 8.3% for an optical sensor. The same method exhibited an FLR of 
6.7% and an FSA of 0% for a capacitive sensor, and an FLR of 7.7% and an FSA of 5.3% for an electro-optical 
sensor.

Tan and Schuckers[132] extended their previous work[131], by reducing the time between capturing fingerprint 
samples to 2 s instead of 5 s. On a dataset of 58 live, 50 artificial and 25 cadaver fingerprints, the augmented 
method showed an accuracy of 90%-100% for some scanners by using a classification tree.

Jia and Cai[133] proposed an extension of their previous work[50]. In this study, five features were utilized. Two 
of them represented skin elasticity, whilst the other three represented perspiration. This method computed 
two static features, while the remaining three were dynamic features. The proposed scheme was tested on a 
dataset comprising of 770 image sequences and achieved an EER of 4.49%.

Plesh et al.[134] used a sensor with time-series and color sensing capabilities to capture a gray scale static 
image and a time-series color capture simultaneously. A dynamic color capture has the ability to measure 
signs, such as the perspiration, skin elasticity deformation and the displacement of blood that occurs when a 
finger is pressed. In their work, the second capture (the dynamic one) was utilized for classification with two 
methods. Initially, static-temporal feature engineering was utilized and then the InceptionV3 CNN[135] 
trained on ImageNet was used for classification. In their work, the classification performance was evaluated 
with the use of a fully connected DNN utilizing solely static or dynamic features and a fusion of the two 
feature sets. On a custom dataset comprising of over 36,000 image sequences and a state-of-the-art set of PA 
techniques, the approach that utilized the fusion of both static and dynamic features achieved a mean 
APCER, at a 1.0% BPCER operation point, of 3.55 %, a mean APCER, at a 0.2% BPCER operation point, of 
0.626% and a standard deviation, at 1.0% BPCER, of 1.96%.

Nogueira et al.[136] evaluated the efficiency of two feature extraction techniques with data augmentation on 
an SVM classifier. After the preprocessing step, two feature extraction techniques, i.e., a CNN and LBP, 
were conducted and randomized PCA was utilized for dimensionality reduction. The proposed CNN, with 
the use of augmented data, exhibited an ACE of 4.71% on the LivDet 2009, 2011 and 2013 datasets.

Yuan et al.[137] suggested a backpropagation neural network that utilized gradient values calculated by the 
Laplacian operator. They also presented a system that used the methods shown in Ref.[94] and Ref.[138] to 
create more productive input data and category labels. This architecture offered an ACE of 6.78% on the 
LivDet 2013 dataset.

Agarwal and Chowdary[139] proposed the utilization of stacking and bagging ensemble learning approaches 
in fingerprint PAD. The suggested algorithms considered the similarities of datasets utilized for PAD. 
Moreover, they are adaptive because they comply with the features extracted from bona fide and artificial 
fingerprint samples. The proposed algorithms achieved better performance in accuracy and false positive 
rate than the best individual base classifier. More specifically, the stacking average accuracy was 80.76%, 
while the bagging average accuracy was 75.12% on the LivDet 2011 dataset.
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Anusha et al.[140] proposed an architecture that utilized global image and local patch features. It used LBP 
and Gabor filters in the preprocessing process to extract features using DenseNet[141]. For the extraction of 
local patch features, a second DenseNet was used in combination of a channel and spatial attention network 
module[142]. For patch discrimination, a novel patch attention network was proposed. This network was also 
used for feature fusion. This method showed average accuracies of 99.52%, 99.16% and 99.72% on the 
LivDet 2017, 2015 and 2011, respectively.

Agarwal and Bansal[143] proposed the fusion of pores, perspiration and textural features for PAD. The 
dimensionality of the extracted feature vector was reduced with the use of a stacked autoencoder pretrained 
in a greedy layer wise manner. A supervised trained Softmax classifier was utilized for classification. In 
terms of performance, this method achieved ACEs of 0.1866% on the LivDet 2013 and 0.3233% on the 
LivDet 2015 dataset.

Li et al.[144] used features extracted with three algorithms, i.e., SIFT, LBP and HOG. As a result, the benefits 
of these algorithms were combined and the overall performance was increased. A fusion rule was developed 
to fuse the features and the produced feature vector was then classified by an SVM. This method showed 
ACEs of 4.6% on the LivDet 2011 dataset, 3.48% on the LivDet 2013 dataset and 4.03% on the LivDet 2015 
dataset.

Sharma and Selwal[145] proposed a method that utilized majority ensemble voting based on three local and 
adaptive textural image features. The features were acquired with a new LBP variant descriptor called the 
local adaptive binary pattern (LABP), combined with features gathered with the use of a CLBP and BSIF 
descriptors. This method achieved ACERs of 4.11%, 3.19%, 2.88% and 2.97% on the LivDet 2009, 2011, 2013 
and 2015 datasets, respectively.

Generalization efficient/wrapper methods
In this category, PAD methods are presented that focus on the efficiency against PAIs made with materials 
not used during training. Moreover, the performance of methods that were evaluated on novel PAI 
materials are reported. Some of the presented PAD methods can be used as add-ons or wrappers to any 
PAD method, in order to improve the performance against PAIs of unknown materials. A summary of the 
presented methods is given in Table 8.

Rattani and Ross[146] proposed the creation of a novel material detector that detects PAIs made of novel 
materials. These samples were then used to automatically retrain and update the PAD method. To keep the 
computational complexity low, the automatic adaptation procedure was executed when the presentation 
attack detector was offline. This scheme was evaluated on the LivDet 2011 dataset and it exhibited an 
average correct detection rate of up to 74% and an up to 46% improvement in presentation attack 
performance when the adaptive approach was utilized.

Jia et al.[147], in order to address the issue of lack of knowledge of the materials used for artificial fingerprints, 
suggested a one-class SVM with negative examples (OCSNE). The OCSNE showed an ACE of 23.6% on a 
modified dataset according to the needs of the evaluation the LivDet 2011, which was better than an SVM.

Rattani et al.[148] proposed to handle PAD as an open set recognition problem. The authors claimed that 
their approach is useful, because during deployment novel materials different than the ones that the system 
was trained on may be used to construct artificial fingerprints. In their work a Weibull-calibrated SVM (W-
SVM) was used as a novel material detector and as a PAD. They also developed a scheme to automatically 
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Table 8. Generalization efficient/wrapper methods

Ref. Year Dataset Method Results

Rattani and Ross[146] 2014 LivDet 2011 Automatic adaptation to novel 
materials by the use of a novel material 
detector

Average correct detection rate up to 74% and an 
up to 46% improvement in performance

Jia et al.[147] 2014 Modified 
version of the 
LivDet 2011

One-class SVM with negative examples ACE of 23.6%

Rattani et al.[148] 2015 LivDet 2011 Weibull-calibrated SVM 44% improvement in performance than other 
methods

Sequeira and 
Cardoso[149]

2015 LivDet 2013 Semi-supervised classification based on 
a mixture of Gaussians models

ACE of 8.35%

Nogueira et al.[112] 2016 LivDet 2009, 
2011, 2013

CNN-VGG ACE of 16.1% on the LivDet 2011 
ACE of 5.45% on the LivDet 2013

Ding and Ross[150] 2017 LivDet 2011 Ensemble of one class SVMs based on 
descriptors that utilize different 
features

Average correct detection rate of 86.1% on known 
materials 
Average correct detection rate of 84.7% on 
unknown materials

Pala and Bhanu[117] 2017 LivDet 2011, 
2013

Triplet of CNNs ACE of 10.05% on the LivDet 2011 
ACE of 3.35% on the LivDet 2013

Gajawada et al.[151] 2019 LivDet 2015 Universal Material Translator - 
generative adversarial network

BPCER1000 of 21.96% on unknown PAIs

Chugh and Jain[152] 2019 MSU-FPAD A deep convolutional neural network 
that utilized local patches centered and 
aligned using fingerprint minutiae

Average generalization performance of TDR = 
75.24% when the leave-one-out method was used 
TDR of 97.20% with an FDR of 0.2% when all PAIs 
were used in training.

Engelsma and Jain[153] 2019 Own dataset 3 Generative adversarial networks BPCER500 of 50.20%

Zhang et al.[122] 2019 LivDet 2015 Residual convolutional neural network 
(Slim-Res CNN)

Accuracy of 96.82% on the LivDet 2015

Park et al.[121] 2019 LivDet 2015 CNN ACE of 1.9%

Grosz et al.[154] 2020 LivDet 2011 & 
2015 - MSU-
FPAD

Adversarial representation learning 92.94% TDR 
0.2% FDR

Zhang et al.[126] 2020 LivDet 2015 CNN ACE of 3.31%

González-Soler et al.[155] 2021 LivDet 2019 Pyramid histogram of visual words 
(PHOW)

BPCER100 in range of 1.98%-17%

Chugh and Jain[156] 2021 LivDet 2017 
dataset

Universal Material Generator TDR improvement from 75.24% to 91.78% when 
FDR was 0.2%. Average cross-sensor spoof 
detection performance improvement from 67.60% 
to 80.63%

TDR: True detection rate; FDR: false detection rate; ACE: average classification error; SVM: support vector machine; CNNs: convolutional neural 
networks; PAIs: presentation attack instruments.

retrain and update the W-SVM depending on the artificial fingerprints it detects. This approach was tested 
on the LivDet 2011 dataset and it exhibits an up to 44% improvement in performance.

Sequeira and Cardoso[149] evaluated several classification methods and concluded that semi-supervised 
classification based on a mixture of Gaussians models yields better results. Moreover, they proposed the 
isolation of the fingerprint from the background by adding an automatic segmentation stage to the 
detection algorithms. The best method they evaluated exhibited an ACE of 8.35% on the LivDet 2013 
datasets.

Nogueira et al.[112] tested their PAD method against attack with PAIs not seen in training and their method 
based on a CNN-VGG achieved average ACEs of 16.1% on the LivDet 2011 dataset and 5.45% on the LivDet 
2013 dataset.
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Ding and Ross[150], in their work based on performance metrics on the LivDet 2011 dataset, proved that 
using an ensemble of one-class SVMs based on descriptors that utilize different features achieves better 
accuracy than binary SVMs and also competed in performance with other state-of-the-art PAD algorithms 
immune to fabrication materials. Another advantage of this method is the limited number of artificial 
fingerprints used for training. The proposed method achieved an average correct detection rate on known 
PAI of 86.1%, while it presents an average correct detection rate on unknown materials of 84.7%, which is 
higher than the automatic adaption method presented in[148].

Pala and Bhanu[117] also evaluated their PAD scheme against unknown attacks and their method achieved 
average ACEs of 10.05% on the LivDet 2011 and 3.35% on the LivDet 2013.

Gajawada et al.[151], to improve the efficiency of any PAD, especially against new materials, developed the 
Universal Material Translator (UMT) as a deep learning augmentation wrapper. They proposed the 
synthetization of artificial samples by utilizing only a small part of them. Along with the UMT, they also 
used a GAN. Although the authors believe that the combination of a UMT and a GAN produces better 
results, GANs insert certain artefacts and noise in the generated images that are detectable and negatively 
affect the performance of the classifiers. Their method was tested on the LivDet 2015 dataset and 
demonstrated a BPCER1000 of 21.96% on unknown PAIs.

Chugh and Jain[152] experimented on the efficiency of the so-called spoof buster, a PAD wrapper developed 
in[18], which could be used on top of any PAD method to improve generalization and efficiency, especially 
against PAIs not seen in training. The spoof buster used a deep convolutional neural network that utilized 
local patches centered and aligned using fingerprint minutiae. The MSU-FPAD dataset was utilized and 
their method achieved a (weighted average generalization performance) TDR of 75.24% when the leave-
one-out method was used, as opposed to a TDR of 97.20% with an FDR of 0.2% when all PAIs were used in 
the training.

Engelsma and Jain[153] proposed the utilization of three GANs on a training set that contained only bona fide 
samples. Their method showed improvement in cross-material performance, compared to one class or 
binary state-of-the-art classifiers, on their own dataset that contains 5531 artificial samples (from 12 
materials) and 11,880 bona fide samples. For this dataset, it achieved a BPCER500 of 50.20%.

A Slim-Res CNN[122] also demonstrated, to some extent, robustness against attack with new materials and 
presented an accuracy of 96.82% on the LivDet 2015 dataset, whose  testing sets consisted of artificial 
fingerprints made of unknown materials.

Park et al.[121] also evaluated their proposed method on the LivDet 2015 and concluded that their method 
presents efficiency against attacks made from unknown materials. The patched based CNN exhibited an 
ACE of 1.9%.

Grosz et al.[154] suggested the use of adversarial representation learning in DNNs. Their proposal can be 
added to any CNN that uses 96 × 96 aligned minutiae-centered patches for training, along with the 
utilization of a style transfer network wrapper. Their method achieved a 92.94% TDR and a 0.2% FDR on 
the LivDet 2011 and 2015 datasets and on the MSU-FPAD dataset.
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Zhang et al.[126] also tested their proposed method against attacks from new materials and achieved an ACE 
of 3.31% on the LivDet 2015.

González-Soler et al.[155] suggested three techniques for PAD. Initially, the pyramid histogram of visual 
words was utilized for extracting the local features of the fingerprint with the use of dense SIFT descriptors. 
Afterwards, the feature vector was formed with the utilization of three methods: (1) bag-of-words; (2) Fisher 
vector (FV); and (3) vector locally aggregated descriptors. A linear SVM was used for classification. The FV 
encoding achieved the best detection accuracy on the LivDet 2019 competition. Fusion of the three 
encodings achieved even better performance and yielded a BPCER100 in the range of 1.98%-17% in the 
presence of unknown PAI species.

Chugh and Jain[156] proposed the utilization of the Universal Material Generator (UMG) for the 
performance improvement of any PAD method against unknown materials [Figure 11]. The UMG is a 
CNN, trained on characteristics of known materials that artificial fingerprints are made off, in an effort to 
synthesize artificial samples of unknown materials. The UMG improves the performance by increasing the 
TDR from 75.24% to 91.78% when the FDR was 0.2% and the average cross-sensor presentation attack 
detection performance from 67.60% to 80.63% on the LivDet 2017 dataset.

DISCUSSION
Biometric authentication systems have been widely used in recent years and therefore PAD has become 
crucial. This literature review revealed the immense research in the field of fingerprint PAD. Hardware-
based approaches rely on the detection of signals that confirm that the subject of the recognition process is a 
genuine one. Although hardware-based approaches present higher performance and reliability, they are 
intrusive and require extra capturing hardware, added to the sensor of the fingerprint recognition scheme, 
which comes at great expense and in some cases adds a time delay on the verification process[48]. These are 
mostly the reasons that a relatively small number of hardware-based solutions, in contrast to software-based 
methods, can be found in the literature. Furthermore, software PAD methods have the potential to protect 
against security vulnerabilities that are not categorized as PAs, e.g., attacks utilizing modified samples at the 
communication channel of the feature extraction module and the sensor[14].

Software-based PAD methods can be added to any fingerprint recognition system, without any extra cost 
and without modifying the sensor. The criteria of the taxonomy of software-based approaches presented in 
this study were the type of technique or the kind of features used for the information extraction from the 
fingerprint prior to classification. Every category of this taxonomy presents advantages, disadvantages and 
research opportunities.

PAD methods that utilize dynamic features exhibited a promising level of accuracy. The main drawback is 
the time consumption that is high due to the time interval between the capture of samples and the 
extraction of the dynamic features. This fact makes them unsuitable for real-time authentication, as noted 
by Nikam and Agarwal[157]. Furthermore, another drawback is user inconvenience since some methods of 
these categories depend on certain moves of the finger of the user. These are the main reasons why dynamic 
PAD solutions are very rarely met in recent literature.

The features used in PAD methods that exploit physiological features are the several unique characteristics 
of the sweat pores and the perspiration phenomenon, which have substantial strength and discriminative 
power. These methods in some cases exhibit computational simplicity but also present high intra-class 
variability and usually require more than one image of the fingerprint, thus making the process slower with 
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Figure 11. Artefacts and their respective images[156].

increased computation time. According to Nikam and Agarwal[157], perspiration-based methods are not 
efficient for real-time authentication. Researchers worked mainly in the direction of rectifying these 
disadvantages but research interest was focused on approaches based mainly on CNNs and texture 
descriptors due to the advantages they exhibit. Recent works on PAD methods that rely solely on 
anatomical or physiological features are rare, but as proved by the work of Agarwal and Bansal[143], they are 
considered good supplement methods to approaches that fuse features.

PAD methods based on image quality features rely on the diversity between bona fide and artificial samples 
due to the coarseness of the surface of the fingerprint. This diversity exists on account of the agglomeration 
that happens during processing of the materials used for artificial samples because of the large organic 
molecules of these materials[71]. The properties used for image quality-based PAD methods present different 
strengths, discriminative power and weaknesses. The main advantages of these methods rely mostly on their 
simplicity and the low computational complexity, thereby achieving fast response times[14]. The major 
disadvantages are that the classifier’s efficiency depends on the kind of PA[158] and the performance depends 
on environmental, scanner and user related (usability) conditions[70,74]. Although image quality PAD 
methods have been used commercially, researchers’ attention has been focused mainly to local texture 
descriptors and CNNs that present superior performance. Nevertheless, their computational simplicity 
makes them ideal for approaches that utilize the fusion of features.

Local texture descriptors are straightforward, rapid and can be implemented in real-time fingerprint 
recognition schemes. Photometric, rotational and geometric effects have no effect on local descriptors. This 
fact is one of the reasons why these descriptors achieved superior performance in PAD approaches[28]. Due 
to their accurate target localization, they generally perform better in cross-dataset and cross-material 
experiments than their neural network counterparts, which perform best for cross-sensor experiments[159]. 
There are three major drawbacks for these methods: (1) the performance of the descriptors rely on the type 
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of the sensor used for the acquisition of the sample[160]; (2) a large dataset is required for training[158]; and (3) 
local texture descriptors generalize poorly against PAs accomplished with the use of materials not 
encountered in training[148].

Ghiani et al.[78] conducted experiments with features based on pore detection, ridge wavelets and several 
textural features. They concluded that the best method was LBP, although it has the disadvantages of being 
sensitive to image rotation and the need for longer computational time due to its long histogram.

According to González-Soler et al.[161], DSIFT-based encoding achieves the best performance against 
unknown materials. González‐Soler et al.[79] also reported that gradient-based features, such as black 
saturation, white saturation, lack of continuity, unwanted noises and ridge distortions, achieve the best 
performance amongst other descriptors and especially the fusion of gradient and textural features present 
even better performance.

Local feature descriptors are a very active field of PAD. There are many opportunities for research, 
especially concerning the creation of new feature descriptors. According to Sharma and Dey[162], methods 
for the accurate extraction of the contrast and orientation of the fingerprint image, which is mandatory for 
the design of a new descriptor, can be found in the literature.

CNNs provide an excellent solution to image recognition and have been used in many fields beyond 
computer vision, such as information security. CNN-based PAD methods provide promising accuracy but 
there are two drawbacks that limit their usage in commercial fingerprint recognition systems. The first is 
that these methods are sensor and material dependent. This fact makes them susceptible to PAs with 
unknown materials or with different capture devices. The cause of this limitation could be that the learning 
methods of these approaches utilize several filters that rely on known attacks and combine convolutional, 
pooling and fully connected layers, which do not present good generalization[79]. The second drawback is 
that these method’s requirements regarding memory and computational time are high[162], making them 
unsuitable for usage in low resource environments, such as smartphones. This is the reason that there is a 
noticeable turn by researchers that use deep learning methods to solutions that require the least processing 
time.

The use of local patches instead of the whole fingerprint image is also widespread. Local patches are small 
regions of interest of the fingerprint image. Another major limitation of these methods relies on the number 
of training patterns. CNNs are complex algorithms that need tens of thousands, millions in some cases, of 
training patterns to perform and generalize well. Therefore, new datasets or mixture of datasets should be 
utilized. A different approach should be the augmentation of the datasets to provide more bona fide and 
artificial samples. Nogueira et al.[136] suggested the augmentation of the dataset by the artificial creation of 
images that present uneven illumination and random noise. They also proposed that different classifiers 
should be trained for different transformation types. Another possible solution should be the adoption of 
other deep learning approaches like one-shot learning[163].

Raja et al.[164] concluded that handcrafted textural features achieve the best performance on capacitive 
sensors, whereas naturally learned features achieve optimal performance on thermal and optical sensors. 
They also suggested the use of deep learning-based approaches with the utilization of large data sets for the 
creation of new reliable PAD methods. Pinto et al.[119] suggested that reliable PAD models should rely on 
both “hand-crafted” and “data-driven” solutions.
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In general, feature fusion approaches exhibit superior accuracy than their single feature counterparts. 
Furthermore, their performance is competitive with state-of-the-art PAD methods. In Ref.[18], answers to the 
major challenges that feature fusion methods face are provided. They concluded that fusion is more 
effective at a feature level than at a decision level. Furthermore, proper transformation of the different views 
into a common latent space is the best method for harmonization or normalization of the features used for 
fusion. Moreover, reducing dimensionality of the classification space is best suited with the use of subspace 
transformation. Finally, the usage of deep learning methods is suitable for the automated learning of the 
way diverse features aggregate.

A common limitation to all the aforementioned PAD categories is their generalization ability against 
unknown materials. This is the main reason that new approaches (discussed in Generalization 
efficient/wrapper methods) have been proposed by researchers. These approaches are focused on increased 
performance against PAIs not seen in training and in the case of wrappers-addons can be used on top of any 
PAD method and have a positive impact on performance. The drawback of the latter type of approach is the 
increase in computational time and memory usage. Nogueira et al.[112] suggested that the PAD generalization 
error and the performance drop in presence of PAΙs not used in training, are mostly due to new sensors and 
not new materials. The low level of interoperability among different sensors, due to the influence in the 
image properties and more specifically in the corresponding feature space, on account of the unique 
characteristics of each different sensor was also reported by Tuveri et al.[165].

Marasco and Sansone[166] concluded that PAD methods that rely on multiple PAD features are more robust 
against PAs realized with the use of materials not used in training. Finally, Marasco et al.[115] noted that 
CNNs exhibit the ability to successfully adapt to PAD problems with the use of pre-training on ImageNet.

User authentication systems that rely on a single biometric trait, suffer from vulnerabilities, due to poor data 
quality and scalability. Multimodal biometrics utilize data acquired from different sources, resulting in 
better performance and reliability[167]. This is the direct outcome of the fusion of data from different sources 
that makes possible the extraction of more distinctive features than the features extracted with the use of 
unimodal systems[168]. Furthermore, these systems acquire data from different sensors, making them more 
robust against illumination conditions and other factors related to the sensors that have a negative impact 
on performance[169]. A key factor in multimodal systems is the level in which the fusion of the information is 
accomplished. Fusion at the extraction level does not present advantages since there is a significant amount 
of data to be fused. Fusion at the matcher score level has attracted significant attention by researchers 
because of its simplicity. Finally, the best authentication performance is expected when fusion is performed 
at the decision level. The disadvantage of this approach is the fact that the extracted feature vectors may be 
incompatible[170]. In the literature, there are proposed methods that fingerprint is used in conjunction with 
other biometric traits like face and iris recognition[171,172], face and speech[173] and face[174].

Moreover, ECG signals were used along with the fingerprints with promising results, as discussed in 
HARDWARE-BASED PRESENTATION ATTACK DETECTION[45,46,175-177]. Other cognitive factors, like 
EEGs, may also be utilized in conjunction with fingerprints. However, the aforementioned biometric traits 
require explicit, and sometimes expensive, capture equipment.

Another authentication scheme that presents a high level of security is the n-factor authentication scheme, 
where n denotes the number of combined factors. The factors may be knowledge, possession or inherence 
based. In the knowledge category, factors like personal ids, usernames or identification numbers are 
included. Possession-based factors include one-time password tokens, ID cards and smart cards. Inherence 
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factors include any biological trait[178]. These systems utilize cryptography to improve security.

He and Wang[179] proposed that the user should use their smart card, input their password and id, and then 
utilize their personal biometric impression. This system employed curve cryptography to further improve 
security. Qiu et al.[180] proposed a similar authentication scheme that utilized the “fuzzy-verifiers”[181] and 
“honeywords”[182] techniques along with chaotic-maps for mobile lightweight devices. In n-factor 
authentication schemes, the fingerprint is one of the most used biometric traits[183-189].

By analyzing Tables 2-8, we reach the following conclusions:

- The majority of the presented state-of-the-art methods make use of the LivDet datasets. Therefore, they 
can be considered as benchmarks.

- There is a clear revulsion to the research, especially from 2015 and towards to textural features and deep 
learning methods, especially CNNs.

- The datasets that are utilized by the authors of presented publications consist of only a few thousand 
samples. The distribution of training and test sets for each one of the most utilized datasets is shown in 
Table 1.

Finally, Table 9 presents a comparative analysis of the aforementioned PAD techniques, highlighting the 
advantages and disadvantages of each category.

Research challenges and potential research directions
The presentation of the research methods proposed to the literature highlighted the current trends along 
with the advantages and disadvantages of each PAD category. Moreover, the research challenges and 
potential research directions emerged and are presented in this section.

The first challenge concerns the data that train the classifiers. The majority of the presented methods are 
sensor and dataset dependent, i.e., the training and test sets are from the same sensor and from the same 
dataset. “Good” data result to better training and eventually better classification results. A “good” dataset 
should be balanced and comprised of samples acquired from different sensors (the more the better). A 
thorough analysis of Table 1 reveals that only bona fide and artificial samples are present in the datasets. 
Nevertheless, as science evolves, the possibility that someone attacks a biometric system with natural 
samples, i.e., transplanted hands, fingerprints made of natural skin and plastic surgery results, becomes 
higher. Thus, the models should be trained with datasets comprising of these biological materials also. 
However, there is a significant lack of these data and therefore research in this field, i.e., biological 
presentation attack detection is limited. Hence, the sensor and dataset interoperability are major unresolved 
problems and have not been given much attention yet.

Regarding the methods that are mainly utilized by researchers, it is obvious that during the last five years, 
there has been a revulsion to deep learning methods, especially CNNs. These methods provide promising 
accuracy but the drawbacks that limit their usage in commercial fingerprint recognition systems must be 
addressed. CNNs are sensor and material dependent. The only effective way to overcome the first drawback 
is to create and utilize datasets comprising of samples acquired from more subjects, more sensors and 
containing biological materials.
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Table 9. Comparative analysis of PAD categories

Category of PAD Advantages Disadvantages Research opportunities

Hardware based Higher performance and reliability Intrusive and expensive although not immune to 
presentation attacks

OCT, hybrid methods (software and hardware combined)

Dynamic features Satisfactory accuracy Time consuming. Depending on the method, may be 
inconvenient for the user

Fusion of features extracted with the use of textural descriptors or neural 
networks

Anatomical or 
physiological features

Computational simplicity depending on the 
approach

High intra-class variability, increased computation 
time depending on the approach

Fusion with other features

Image quality features Simplicity, low computational complexity, and fast 
response times

Performance depends on environmental, scanner and 
user related conditions

Fusion with other features

Texture features Straightforward, quick, can be implemented in 
commercial fingerprint recognition schemes 
Immune to photometric, rotational and geometric 
effects 
Cross-dataset and cross-material better 
performance compared to neural networks

Descriptor’s performance relies on the type of the 
sensor. A large dataset is required for training 
Poor generalization against attacks performed with 
materials not used in training

Novel descriptors or variations of known descriptors (SIFT, LBP, LPQ etc.) 
Fusion with other features

Neural networks Better performance - on cross sensor datasets - 
compared to texture descriptors 
Better performance on datasets with many 
captured subjects

Sensor and material dependent 
High requirements in memory and computational 
time 
Low performance to low quality (small number of 
images and subjects) datasets 
Utilization of large data sets (deep learning)

Approaches that require low memory and less computational time. 
Augmentation of the datasets used for training 
One shot learning. Fusion with other features

Fusion of features Superior accuracy compared the single feature 
counterparts competitive to state-of-the-art

Increased memory and computation time 
requirements than the single feature counterparts

New approaches with fusion of features that fuse at feature level, have reduced 
dimensionality, and utilize harmonization or normalization of the features

Generalization efficient - 
Wrappers

Increased performance against unknown PAIs Increased memory and computation time 
requirements when used as addons or wrappers

Approaches that utilize multiple features

PAD: Presentation attack detection; OCT: optical coherence tomography; SIFT: scale invariant feature transform; LBP: local binary pattern; LPQ: local phase quantization; PAIs: presentation attack instruments.

Moreover, the required memory and the computational complexity are high[162] and this makes them unsuitable for usage in low resource environments, such 
as mobiles or other wearable devices. On this basis, the generalization of the method should be improved. Nevertheless, the more data we use, the more time 
we have to train the deep networks. Thus, new approaches like transfer learning and one shot or zero shot learning are getting more notice due to the less 
computational resources they require.

Another interesting research direction is auxiliary supervision. As mentioned in DATASETS, fingerprint PAD is considered as a binary classification problem. 
Nevertheless, the proposed methods in the literature show poor generalization, i.e., poor performance on unseen data. To tackle this, auxiliary learning[190] 
should be helpful. Recent research showed that auxiliary supervision with end-to-end learning provides better anti-spoofing[191].
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Another thing that also must be noted is that biometric sensors are no longer found only in access controls. 
Nowadays, the majority of mobiles and other wearable device makes use of these sensors. The acquired data 
from these sensors (GPS, accelerometer, gyroscope, magnetometer, microphone, NFC and heart rate 
monitors) can be utilized to distinguish a person. However, since these data are heterogeneous, methods 
that analyze and extract a concrete representation of them, should be developed.

Multimodal biometrics is another research field that requires more attention, especially when one or more 
of the modalities concern the so-called cognitive biometrics. Cognitive biometrics concerns the bio-signals, 
like an EEG, ECG or the electrodermal response, which are generated by the brain, heart and the nervous 
system, respectively. These modalities when combined with the behavioral ones, i.e., fingerprint, iris and so 
on, may provide enhanced security.

Finally, a major concern and simultaneously a research challenge that needs to be addressed is the privacy of 
the individual. The acquired samples, regardless of their type (behavioral/cognitive) or the way that have 
been obtained, may be used to either to contravene the privacy of the subject or to profiling them. It is 
therefore crucial to the creation of relevant legislation describing how such data should be handled without 
violating the privacy of the individual. Furthermore, it is also vital that researchers ensure that the methods 
they propose consider privacy issues.

CONCLUSIONS
A comprehensive review regarding presentation attack detection methods has been presented. Moreover, 
both approaches of presentation attack detection techniques, i.e., hardware and software based, were 
thoroughly analyzed and a taxonomy concerning PAD methods was revisited. This literature review 
highlighted all recent advances in this field and pointed out areas for future research to help researchers to 
design securer biometric systems.
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