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INTRODUCTION

Although the transfer of skin flaps is widely used in 
wound coverage and reconstruction, soft tissue necrosis 

remains a challenging problem. In a report by Chen et al.,[1] 
113  cases  (9.9%) out of 1,142 free flap operations had 

Synergistic effect of hyperbaric oxygen 
preconditioning and hydrogen‑rich saline in 
ameliorating rat flap ischemia/reperfusion 
injury
Yi‑Ding Xiao1, Yun‑Qi Liu2, Ming‑Zi Zhang1, You‑Bin Wang1, Yi‑Fang Liu2, Xue‑Mei Ma2

1Department of Plastic Surgery, Peking Union Medical College Hospital, Dongcheng 100730, Beijing, China. 
2College of Life Science and Bioengineering, Beijing University of Technology, Chaoyang 100124, Beijing, China.

Address for correspondence: Dr. You‑Bin Wang, Department of Plastic Surgery, Peking Union Medical College Hospital, Dongcheng 100730, 
Beijing, China. E‑mail: wybenz@sina.com

ABSTRACT
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complications. Eighty‑two percent of these 113  cases 
demonstrated some form of circulatory compromise 
within 24 h after surgery.

Postoperative hyperbaric oxygen  (HBO) therapy has been 
used in plastic surgery in the treatment of random skin 
flaps, axial skin flaps, and flaps with survival problems with 
satisfactory results.[2,3] The effect of HBO preconditioning 
has also been studied in many animal models including 
stroke[4] and spinal cord injury.[5] In a study using a rat 
skin flap model, HBO preconditioning was found to 
improve skin flap survival and depress tumor necrosis 
factor‑α (TNF‑α) expression in skin tissue.[6]

In 2007, Ohsawa et  al.[7] reported that inhalation of H2 
could selectively mitigate •OH (oxhydryl), generating 
an antioxidant effect in a rat model of middle cerebral 
artery occlusion without affecting the signaling of other 
reactive oxygen species (ROS). Subsequently, H2 was shown 
to have protective effects on ischemic/reperfusion  (IR) 
injury in various organs including the liver, heart, kidneys 
and small intestine.[8‑11] The authors have independently 
verified this protective effect.[12]

It is widely accepted that IR injury is a critical factor in 
flap failure while apoptosis is one important feature of 
the IR process.[13,14] In this study, the synergistic effects 
of HBO preconditioning and hydrogen‑rich saline  (HRS) 
treatment were evaluated for their effects on skin flap 
survival and apoptosis in a rat IR skin flap model.

METHODS

Animals
All protocols were approved by the Committee on Animal 
Rights Protection of Peking Union Medical College Hospital 
and were in accordance with the National Institutes of 
Health guidelines for the care and use of laboratory 
animals. Adult male Sprague‑Dawley  (SD) rats weighing 
280‑320 g were used in this study. The rats were housed in 
individual cages under standard conditions with 22‑25 °C 
and 12 h of a light‑dark cycle. The rats were fed a normal 
diet with water provided ad lib pre‑ and post‑operatively.

Epigastric skin flap preparation
An extended epigastric adipocutaneous flap (6 cm × 9 cm) 
was raised over the abdomen in each animal.[12] The left 
superficial epigastric artery and vein were ligated, and 
the right was retained as the pedicle. The pedicle artery 
and vein were occluded with a microvascular clamp and 
6 h of skin flap ischemia was induced. The flap was then 
resutured with a silicone sheet of 0.1  mm deep to it to 
prevent neovascularization from the wound bed. The 
clamp was removed, and the flap was reperfused at the 
end of the ischemic period. Heparin (50,000 U/L in 0.5 mL 
saline) was injected into the left epigastric artery to avoid 
thrombus formation prior to ligation.

Hydrogen‑rich saline production
Hydrogen was dissolved in normal saline  (20  mL) for 
20 min with a speed of 0.2 L/min to a supersaturated level. 
HRS was freshly prepared prior to each use, ensuring that 

a concentration of more than 0.8 mmol/L was reached by 
a needle‑type H2 sensor (Unisense, Aarhus, Denmark).

Experimental protocol and groups
Fifty male SD rats were divided randomly into five groups 
with 10 animals in each group:  (1) a sham‑operated 
group  (sham: no IR, HBO, HRS or normal saline injection). 
Rats in the sham group underwent the same surgery 
as the rats in the other four groups but without the 
period of ischemia;  (2) IR group: 6  h of ischemia was 
induced by clamping the right pedicle, followed by an 
injected intraperitoneally of 5  mL/kg normal saline, 10  min 
prior to reperfusion;  (3) HRS‑treated group: 6 h of ischemia 
was induced by clamping the right pedicle, followed by an 
intraperitoneally injection of 5  mL/kg HRS, 10  min prior to 
reperfusion;  (4) HBO group: 6  h of ischemia was induced 
by clamping the right pedicle after HBO preconditioning 
for 4  times; and  (5) HBO and HRS group: 6  h of ischemia 
was induced by clamping the right pedicle after HBO 
preconditioning for 4 times. 5 mL/kg HRS was administered 
by an intraperitoneally injection, 10 min prior to reperfusion.

Hyperbaric oxygen preconditioning
Rats in the HBO and HBO  +  HRS groups were treated 
with HBO 2  days before surgery. Treatment included 
HBO exposure 4  times for 60  min every 12 h 
(total exposure time of 4  h). 2  L/min of 100% oxygen 
was supplied continuously at 0.25 MPa during the 
HBO treatment. Compression and decompression were 
performed at 5 psi/min. The time at which the HBO 
chamber pressure reached 0.25 MPa and remained stable 
was recorded. Calcium carbonate crystals were placed in 
the chamber to prevent CO2 accumulation. Flap surgery 
began 2 h following the final HBO treatment.

Skip flap survival and perfusion evaluation
Skin flap survival was evaluated 72 h after reperfusion by 
general observation of survival and necrotic phenomena 
and subsequently confirmed by laser speckle contrast 
analysis cameras  (Perimed AB, Stockholm, Sweden). 
The surviving and necrotic areas were measured. The 
percentage of flap survival was defined as the ratio of the 
surviving area to the original flap area.

To evaluate skin flap perfusion, the rats were secured 
onto the operative bed such that the entire flap, including 
part of the normal abdominal skin, was exposed. The 
PeriScan PSI system  (Perimed AB, Stockholm, Sweden) 
was positioned above the rats, imaging an area of 
11  cm  ×  7.5  cm. The image acquisition rate was 3  Hz 
and lasted for 3  min. The ambient temperature was 
maintained between 22 °C and 25 °C during this process. 
Perfusion of the necrotic and survival areas was analyzed. 
Vascular flow was measured using perfusion units (PUs).

Rats were sacrificed on the 3rd postoperative day with 
overdose anesthesia after skin flap survival and perfusion 
evaluation. The survival flaps were harvested for sampling.

TdT‑mediated dUTP‑X nick end labeling staining 
and apoptotic index evaluation
Tissue samples (1 cm2 in size) were taken from the proximal 
areas of the harvested flaps. Samples were sectioned into 
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smaller pieces and fixed with 4% paraformaldehyde in 
0.1 mol/L phosphate buffer. They were then embedded 
in paraffin, sectioned and mounted onto slides for 
TdT‑mediated dUTP‑X nick end labeling (TUNEL) staining.

TUNEL staining was performed using an in  situ cell 
death detection kit  (Roche, Basel, Switzerland). After 
being heated to 60 °C and dewaxed, the sections were 
rehydrated and then incubated in a 20 µg/mL proteinase K 
working solution for 15  min at room temperature. The 
slides were rinsed (5 min, 3 times) with phosphate‑buffered 
saline (PBS) and then incubated in a TUNEL reaction 
mixture for 1  h at 37 °C. The slides were rinsed 
once again and dried. Converter‑POD (anti‑fluorescein 
antibody, Fab fragment from sheep, and conjugated with 
peroxidase (POD)) was added to the samples for 1  h at 
37 °C. The sections were rinsed with PBS and stained 
with 3,3’‑N‑diaminobenzidine tetrahydrochloride. Five 
slide fields were randomly examined using a defined 
rectangular field area under  ×40 magnification. Cells 
were then counted under  ×400 magnification. The 
apoptotic index (AI) was represented as the percentage of 
TUNEL‑positive cells versus the total number of cell nuclei 
per field.

Caspase‑3 activity assay
Caspase‑3 activity was detected using a Fluorometric Assay 
Kit (Biovision Research Products, Mountain View, CA, USA). 
Briefly, 50 mg of skin flap tissue was homogenized in ×2 
reaction buffer and incubated for 1  h at 37 °C with 
caspase‑3 substrate  (DEVD‑APC, 1 mM). Substrate cleavage 
was measured with a spectrofluorometer at 400 nm.

ASK1 and Bcl‑2/Bax Western blot
Skin flap tissue  (100  mg) was sampled from the proximal, 
middle and distal regions of the harvested flaps. The samples 
used for detection were randomly selected from all the 
samples in each rat in each group to avoid any deviation 
caused by using different parts of the skin flap samples. 
Ninety micrograms of total protein were extracted and 
analyzed from each sample. The protein samples were mixed 
with loading buffer and boiled at 95 °C for 15  min. The 
protein samples were then electrophoresed in a 10% dodecyl 
sulfate‑polyacrylamide gel (Bio‑Rad, USA) and transferred onto 
nitrocellulose filter membranes for 1 h at 80 V. The samples 
were incubated overnight at 4 °C with goat polyclonal 
actin antibody (1:1,000 dilution, Santa Cruz Biotechnology, 
Inc., USA), pASK1 antibody (1:500 dilution Cell Signaling 
Technology, Boston, MA, USA), rabbit anti‑Bcl‑2 polyclonal 
antibody (1:1,000 dilution, Chemicon International, Inc., USA), 
and rabbit anti‑Bax polyclonal antibody (1:1,000 dilution, 
Stressgen Bioreagents, Corp., USA). The proteins were then 
incubated with horseradish peroxidase‑conjugated secondary 
antibodies diluted at 1:2,500 for 1  h at 37 °C. The blots 
were then treated with a chemiluminescence detection 
reagent  (Pierce, USA) and exposed to autoradiography film. 
The bands were then quantified by densitometry.

Quantitative real‑time polymerase chain reaction 
for Bcl‑2 messenger RNA
Skin flap tissue  (30  mg) was sampled from the proximal, 
middle and distal areas of the harvested flaps from each 

group. The total RNA was extracted from the samples using 
an RNeasy Fibrous Tissue Mini Kit  (Qiagen, Düsseldorf, 
Germany). One microgram of total RNA was then reversely 
transcribed into single‑stranded complementary DNA with 
a ProtoScript M‑MuLV First Strand cDNA Synthesis Kit 
(New England Biolabs, Ipswich, MA, USA), according to the 
manufacturer’s instructions. The complementary DNA was 
then used for real‑time polymerase chain reaction  (PCR). 
The process of amplification and quantification were 
performed with a real‑time quantitative PCR system 
(Agilent, Santa Clara, CA, USA). β‑actin was used as the 
internal control. The PCR protocol was as follows: heating 
for 2  min at 50 °C, initialization at 95 °C for 10  min, 
followed by 40  cycles of denaturation at 95 °C for 15 s, 
annealing at 58 °C for 30 s, and extension at 72 °C for 
30 s. The primers used in quantitative real‑time PCR were 
Rat Bcl‑2 (forward: 5’‑AGAACCTTGTGTGACAAATGAGAA‑3’ 
and reverse: 5’‑TACCCATTAGACA‑TATCCAGCTTGA‑3’) and 
β‑actin (forward: 5’‑GGCGGCCAAACAGAAAG‑3’and reverse: 
5’‑CTGAGGGCACGGAGGAT‑3’).

Statistical analysis
In this study, all data are reported as the mean ± standard 
error of the mean (SEM). Significant differences were 
determined via one‑way analysis of variance. Least significant 
difference t‑test was used for between‑group comparisons. 
Statistical significance was set at P < 0.05. All analyses were 
conducted using SPSS 17.0 (SPSS Inc., Chicago).

RESULTS

Skin flap survival
Seventy‑two hours following reperfusion, necrotic skin 
flaps were observed and presented as gray areas with 
little elasticity. In contrast, surviving areas maintained 
normal elasticity and skin color  [Figure  1a]. The highest 
skin flap survival percentage was observed in the 
HBO  +  HRS group  (47.70% ±  12.05%). There were 
significant differences between the IR  (23.30  ±  6.49%), 
HRS  (36.90%  ±  7.46%), HBO  (39.00% ±  9.14%) and 
HBO  +  HRS  (47.70%  ±  12.05%) groups  (values are the 
mean ± SEM, IR vs. HRS, P < 0.01; IR vs. HBO, P < 0.001; 
IR vs. HBO + HRS, P < 0.001). Among the HBO, HRS and 
HBO  +  HRS groups there were significant differences 
between HBO and HBO  +  HRS  (P  <  0.05), and HRS and 
HBO + HRS groups (P < 0.05) [Figure 1b].

Skin flap perfusion evaluation
Seventy‑two hours following reperfusion, skin flap 
perfusion stabilized and was analyzed. Skin flap perfusions 
were 131.10 PU ± 20.14 PU in the sham group, 
26.10 PU ± 8.09 PU in the IR group, 62.40 PU ± 14.10 PU 
in the HBO group, 56.00 PU ± 25.12 PU  in the HRS group 
and 84.70 PU ± 13.44 PU in the HBO + HRS group.

A significantly higher blood perfusion was measured in 
the sham, HBO and HBO  +  HRS groups. There were 
statistical differences between the following groups: IR vs. 
HBO, P < 0.001; IR vs. HRS, P < 0.001; IR vs. HBO + HRS, 
P < 0.001; HRS vs. HBO + HRS, P < 0.01; and HBO vs. 
HBO + HRS, P < 0.01 [Figure 1c].
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Apoptotic index evaluation
Apoptotic cell death was observed with TUNEL 
staining [Figure 2a]. The number of apoptotic cells increased 
in the IR group (45.85% ± 6.64%) as compared with the 
sham group (8.57% ± 4.12%). Apoptotic cell number 
was reduced with HBO preconditioning, HRS and HRS 
and HBO preconditioning used cooperatively. HRS and 
HBO preconditioning used cooperatively were more 
efficient in reducing cell apoptotic death than that of 
HBO preconditioning or HRS used independently. The 
AI in HRS was 32.69%  ±  6.80%, in the HBO group was 
30.80%  ±  7.13%, and in the HBO  +  HRS group was 
20.24%  ±  6.90%. There were significant differences 
between each surgical group, (IR vs. HBO, P < 0.001; IR vs. 
HRS, P  <  0.001; IR vs. HBO  +  HRS, P  <  0.001; HBO vs. 
HBO + HRS, P < 0.01; and HRS vs. HBO + HRS, P < 0.001) 
with the exception of HBO versus HRS [Figure 2b].

Caspase‑3 activity
Compared to the IR group  (1.25  ±  0.26), the 
caspase‑3 relative activity was significantly lower 
in the HBO  (0.59  ±  0.12), HRS  (0.53  ±  0.15), and 

HBO  +  HRS  (0.36  ±  0.17) groups  IR  (P  <  0.001). 
Significant differences between the HBO + HRS group and 
the HBO and HRS groups were also found (HBO + HRS vs. 
HRS, P < 0.05; HBO + HRS vs. HBO, P < 0.01). However, 
there was no statistical difference between the HBO and 
HRS groups [Figure 3].

Western blot for pASK1 and Bcl‑2/Bax
The protein expression of pASK1, Bcl‑2 and Bax proteins 
was analyzed by Western blot [Figure 4a]. pASK1 
expressed the highest level in the IR group  (0.25 ± 0.04) 
compared with other groups and was significantly 
decreased in the HBO  +  HRS group  (0.13  ±  0.05) as 
compared to the IR  (0.25 ± 0.04), HRS  (0.17 ± 0.04) and 
HBO  (0.18  ±  0.03) groups. Statistical differences were 
observed in  HBO + HRS vs. IR, P < 0.001; HRS vs. IR, 
P < 0.001; HBO vs. IR, P < 0.001; HBO + HRS  vs.  HBO, 
P < 0.05;  and  HBO + HRS vs. HRS, P < 0.05 [Figure 4b].

The ratio between the level of Bcl‑2 to Bax expression 
increased in the HBO  (2.06  ±  0.49), HRS  (2.90  ±  0.65) 
and HBO  +  HRS  (3.27  ±  0.42) groups. The Bcl‑2/Bax 

Figure 1: The evaluation of the abdominal skin flaps 72 h following ischemia-reperfusion. Black zones represent the necrotic areas. Red, yellow, and the 
adjacent blue areas represent surviving areas with rich blood perfusion. (a) Representative photographs of abdominal skin flap microcirculation in the five 
groups are shown; (b) the survival rate of the total flap area. Flap survival rates were markedly higher in the hyperbaric oxygen, hydrogen-rich saline, and 
hyperbaric oxygen + hydrogen-rich saline groups; (c) the average blood perfusion of total skin flaps. The hyperbaric oxygen + hydrogen-rich saline group has 
the greatest blood perfusion among the surgery groups. IR: ischemia reperfusion, HBO: postoperative hyperbaric oxygen, HRS: hydrogen-rich saline

cb

a



	 Plast Aesthet Res || Vol 2 || Issue 6 || Nov 12, 2015336

ratio in the IR group  (0.98  ±  0.40) was the lowest. 
Statistical differences were observed between HBO + 
HRS vs. IR, P < 0.001;  HBO vs. IR, P < 0.001; HRS vs. IR, 
P < 0.001; HRS vs. HBO, P < 0.001; and HBO + HRS vs. 
HBO, P < 0.001. The highest Bcl‑2/Bax ratio was in the 
HBO + HRS group, but there was no significant difference 
between the HBO + HRS and HRS groups [Figure 4c].

Bcl‑2 messenger RNA expression
The messenger RNA  (mRNA) levels in each group 
were determined with real‑time PCR. β‑actin was 
used as a reference gene. Among all groups, the IR 
group  (0.03  ±  0.03) showed the lowest level of Bcl‑2 
mRNA expression with the exception of the sham group. 
Among surgery groups, there were significant differences 
between the IR group and other groups  (IR vs. HBO, 
P  <  0.01; IR vs. HRS, P  <  0.001; IR vs. HBO  +  HRS, 

P  <  0.001). The expression of Bcl‑2 mRNA in the 
HBO  +  HRS group  (0.15  ±  0.05) was higher than in the 
HBO group  (0.08  ±  0.03) and HRS group  (0.11  ±  0.05), 
with statistically significant differences  (HBO  +  HRS vs. 
HBO, P < 0.001; HBO + HRS vs. HRS, P < 0.05) [Figure 5].

DISCUSSION

Flap transfer has become a basic albeit challenging 
technique for all plastic surgeons given the high‑risk of 
flap failure. Even in cases of microsurgical transfer with a 
stable blood supply, skin flap loss still ranges between 1% 
and 5% in experienced hands.[12,15] There are many reasons 
for partial or total flap loss, including IR injury. During 
the process of IR injury, flap cells may change their 
biochemical properties with the induction of apoptosis,[16] 
cell shrinkage,[17] nuclear condensation, and cell death,[18‑20] 
leading to flap loss.

In clinical work, HBO has been widely used in the 
treatment of challenging wounds and selected 
neurological diseases. HBO is considered to be a successful 
adjunctive therapy for wound healing. In the plastic field, 
postoperative HBO treatment is commonly used following 
flap transfer with satisfactory improvement. There has 
also been research into the protective effect of HBO 
therapy through preconditioning. Cheng found that HBO 
reduced cyclooxygenase‑2 expression and provided brain 
protection following ischemia.[4] The current authors have 
also examined the effects of HBO preconditioning in a 
rat skin flap model and found an improvement in flap 
survival in IR injuries. The mechanisms responsible for 
its protective effect may be related to attenuation of the 
inflammatory response and increased flap perfusion.[6]

Recently, other therapeutic gasses have been studied, 
in particular, hydrogen. Hydrogen can reach relatively 

Figure 3: Caspase-3 activity in all groups 72 h following 
ischemia-reperfusion. Compared to the ischemia-reperfusion group, 
caspase-3 activity was significantly inhibited in the hyperbaric oxygen, 
hydrogen-rich saline, and hyperbaric oxygen + hydrogen-rich saline 
groups. IR: ischemia reperfusion, HBO: postoperative hyperbaric oxygen, 
HRS: hydrogen-rich saline

Figure 2: The results of TdT-mediated dUTP-X nick end labeling staining and the apoptosis index 72 h following ischemia-reperfusion. (a) The evaluation 
of apoptotic cell death by TdT-mediated dUTP-X nick end labeling staining in all groups. Apoptotic cell number was reduced with hyperbaric oxygen 
preconditioning, hydrogen-rich saline and hydrogen-rich saline and hyperbaric oxygen preconditioning used cooperatively (brown staining indicates 
apoptotic cells [red arrow]; ×200); (b) the apoptosis index of all groups. The data shown indicate the percentage of TdT-mediated dUTP-X nick end 
labeling-positive cells and the total cell nuclei per field. Three different slide fields from different skin tissues were counted. TUNEL: TdT-mediated 
dUTP-X nick end labeling, IR: ischemia reperfusion, HBO: postoperative hyperbaric oxygen, HRS: hydrogen-rich saline
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high concentrations quickly, and excessive hydrogen 
can be eliminated from the body via breathing, leaving 
no side effects.[21] The protective and therapeutic 
effects of hydrogen in humans have been reported and 
include such applications as diabetes mellitus type  II,[22] 
hemodialysis,[23] inflammatory myopathies,[24] radiotherapy 
for liver cancer,[25] and acute erythematous skin diseases.[26] 
Animal research in the rat skin flap model has also been 
performed to test the protective effect of HRS and has 
shown that HRS increases the surviving areas of rat 
abdominal skin flaps while decreasing oxidative stress and 
inflammation.[12]

Based on the above theories, this study focused on the 
combined application of HBO preconditioning and HRS 
treatment, demonstrating its synergistic effect in protecting 
a rat skin flap from IR injury by depressing apoptosis. In 
this study, an abdominal island skin flap IR model was 
established by ligating the left superficial epigastric artery 
to investigate cellular and molecular changes following 
HBO, HRS, and combined treatments. This model was 
first established by Kuntscher et  al.[27] In his study, an 
extended  (6  cm  ×  10  cm) epigastric adipocutaneous flap 
was harvested, and then the flap was sutured back over 
a silicone sheet. This flap model has been widely used to 
study IR injury for the following reasons: first, the flap 
size is large enough for observation of the survival area. 
In the sham group, the epigastric artery could only sustain 
75.40% ± 10.01% of the blood supply to the flap; second, 
with a large flap size, the survival area in each group can 
be measured scientifically and easily compared. Second, 
in this model, the flap was supplied by one epigastric 
artery while other was ligated. A  silicon sheet was also 
used to prevent revascularization. Thus, the blood supply 
to the model can be easily controlled and manipulated. 
In this study, several modifications were made including 

the use of an ultrathin silicon sheet  (0.1  mm) to avoid 
revascularization and heparinized saline to avoid 
thrombus formation.[12] Analysis of the results showed that 
skin flaps with HBO preconditioning and HRS treatment 
have the highest rate of survival in an IR model.

As a new mechanism of inducing cellular IR injury, a 
TNF‑α‑induced inflammation via mitochondrial ROS (mtROS) 
generation has received much attention. mtROS generated 
by TNF‑α can oxidize the reduced thioredoxin‑apoptosis 
signal‑regulating kinase 1 complex (Trx  [SH] 2‑ASK1), and 
then activate ASK1 and its downstream stress signaling 
targets including JNK[28‑31] to initiate apoptosis. ASK1 
could, therefore, be considered to be a bridge during the 
apoptotic signaling pathway. One pair of proteins plays 
a paramount role in regulating apoptosis, specifically the 
antiapoptotic protein Bcl‑2 and the pro‑apoptotic protein 
Bax. The ratio of Bcl‑2/Bax determines the cellular direction 
toward apoptosis.[32] Caspase‑3 plays an important role in 
increasing the rate of apoptosis. Activated caspase‑3 cuts 
poly  (ADP‑ribose) polymerase and increase the activity 
of Ca2+/Mg2+‑dependant endonuclease to destroy DNA 
molecules.[33]

In this study, the HBO, HRS and HBO  +  HRS groups 
showed low levels of apoptotic. HBO preconditioning and 
HRS used cooperatively were more efficient in reducing 
cellular apoptosis than HRS or HBO preconditioning 
used independently. Caspase‑3 could increase the rate 
of apoptosis. ASK1, as a bridge in the apoptotic process, 
determines the integrity of the JNK pathway. The caspase‑3 
activity and pASK1 expression were significantly reduced 
in the HBO, HRS and HBO + HRS groups. Compared to the 
HBO and HRS groups, the HBO + HRS group showed the 
lowest level of caspase‑3 activity and pASK1 expression. 
Bcl‑2, a mitochondrial anchoring protein, may prevent 
apoptosis by acting as an antioxidant.[34] The Bcl‑2/Bax 
ratio and Bcl‑2 mRNA expression were increased among 
the HBO, HRS and HBO  +  HRS groups. The Bcl‑2/Bax 

Figure 5: The relative value of Bcl-2 messenger RNA in all groups 72 h 
following ischemia-reperfusion. Compared to the ischemia-reperfusion 
group, the hyperbaric oxygen, hydrogen-rich saline, and hyperbaric oxygen 
+ hydrogen-rich saline groups show higher levels of Bcl-2 messenger 
RNA expression, especially the hyperbaric oxygen + hydrogen-rich saline 
group. IR: ischemia reperfusion, HBO: postoperative hyperbaric oxygen, 
HRS: hydrogen-rich saline

Figure 4: The results of Western blot, pASK1 relative value and Bcl-2/Bax 
ratio in each group 72 h following ischemia-reperfusion. (a) Representative 
images of Western blots for pASK1, Bcl-2, and Bax; (b) pASK1 relative 
values in all groups. Compared to the ischemia-reperfusion group, 
the expression of pASK1 was significantly reduced in the hyperbaric 
oxygen, hydrogen-rich saline, and hyperbaric oxygen + hydrogen-rich 
saline groups; (c) the ratio between Bcl-2 and Bax in all groups. Bcl-2/
Bax ratio reveals the highest level in hyperbaric oxygen + hydrogen-rich 
saline group. IR: ischemia reperfusion, HBO: postoperative hyperbaric 
oxygen, HRS: hydrogen-rich saline
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ratio and Bcl‑2 mRNA expression level were higher in the 
HBO + HRS group than in the HBO or HRS groups.

This study demonstrates the synergistic effect of HBO 
preconditioning and HRS treatment. By combining the 
advantages of HBO and HRS, improved flap survival and 
ischemia tolerance can be used clinically. IR oxygen is 
not a rare gas and can be readily accessed. However, the 
application of hydrogen is challenging secondary to its 
explosive properties and the difficulty of transportation. 
HRS avoids such problems and can be used in many 
clinical scenarios. The mechanism of the synergistic effect 
of HBO preconditioning and HRS treatment have not yet 
been fully elucidated, and further studies are required. 
A  limitation of this study was the need for an additional 
IR group with a placebo treatment which would have 
allowed the comparison of the effects of HBO treatment. 
With this group, the study would have been more 
rigorous.

This study showed that compared to an IR group, the rate 
of skin flap survival is improved, and cellular apoptosis 
is attenuated secondary to a synergistic effect of HBO 
preconditioning and HRS treatment.

In conclusion, the synergistic application of HBO and 
HRS showed a higher flap survival rate, which could be a 
combined treatment to improve skin flap survival against 
IR injury.
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